1 |
BELLOMO R, KELLUM J A, RONCO C, et al. Acute kidney injury in sepsis [J]. Intensive Care Med, 2017, 43(6):816-828. doi:10.1007/s00134-017-4755-7
doi: 10.1007/s00134-017-4755-7
|
2 |
VAARA S T, BHATRAJU P K, STANSKI N L, et al. Subphenotypes in acute kidney injury: A narrative review [J]. Crit Care, 2022, 26(1):251. doi:10.1186/s13054-022-04121-x
doi: 10.1186/s13054-022-04121-x
|
3 |
COOK A M, HATTON-KOLPEK J. Augmented Renal Clearance [J]. Pharmacotherapy, 2019, 39(3): 346-354. doi:10.1002/phar.2231
doi: 10.1002/phar.2231
|
4 |
HUANG C Y, GÜIZA F, DE VLIEGER G, et al. Daily fluctuations in kidney function in critically ill adults [J]. Crit Care, 2022, 26(1): 347. doi:10.1186/s13054-022-04226-3
doi: 10.1186/s13054-022-04226-3
|
5 |
WARWICK J, HOLNESS J. Measurement of Glomerular Filtration Rate [J]. Semin Nucl Med, 2022, 52(4):453-466. doi:10.1053/j.semnuclmed.2021.12.005
doi: 10.1053/j.semnuclmed.2021.12.005
|
6 |
LEVEY A S, STEVENS L A, SCHMID C H, et al. A new equation to estimate glomerular filtration rate [J]. Ann Intern Med, 2009, 150(9): 604-612. doi:10.7326/0003-4819-150-9-200905050-00006
doi: 10.7326/0003-4819-150-9-200905050-00006
|
7 |
LEVEY A S, CORESH J, BOLTON K, et al. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification [J]. Am J Kidney Dis, 2002, 39(2 ): S1-S266.
|
8 |
LEVEY A S, BOSCH J P, LEWIS J B, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group [J]. Ann Intern Med, 1999, 130(6): 461-470. doi:10.7326/0003-4819-130-6-199903160-00002
doi: 10.7326/0003-4819-130-6-199903160-00002
|
9 |
COCKCROFT D W, GAULT M H. Prediction of creatinine clearance from serum creatinine [J]. Nephron, 1976, 16(1): 31-41. doi:10.1159/000180580
doi: 10.1159/000180580
|
10 |
ROSTOKER G, ANDRIVET P, PHAM I, et al. A modified Cockcroft-Gault formula taking into account the body surface area gives a more accurate estimation of the glomerular filtration rate [J]. J Nephrol, 2007, 20(5): 576-585.
|
11 |
RIGALLEAU V, LASSEUR C, RAFFAITIN C, et al. The Mayo Clinic quadratic equation improves the prediction of glomerular filtration rate in diabetic subjects [J]. Nephrol Dial Transplant, 2007, 22(3): 813-818. doi:10.1093/ndt/gfl649
doi: 10.1093/ndt/gfl649
|
12 |
SCHAEFFNER E S, EBERT N, DELANAYE P, et al. Two novel equations to estimate kidney function in persons aged 70 years or older [J]. Ann Intern Med, 2012, 157(7):471-481. doi:10.7326/0003-4819-157-7-201210020-00003
doi: 10.7326/0003-4819-157-7-201210020-00003
|
13 |
GOODBRED A J, LANGAN R C. Chronic Kidney Disease: Prevention, Diagnosis, and Treatment [J]. Am Fam Physician, 2023, 108(6):554-561.
|
14 |
GIJSEN M, WILMER A, MEYFROIDT G, et al. Can augmented renal clearance be detected using estimators of glomerular filtration rate? [J]. Crit Care, 2020, 24(1):359. doi:10.1186/s13054-020-03057-4
doi: 10.1186/s13054-020-03057-4
|
15 |
VOLBEDA M, HESSELS L, POSMA R A, et al. Time courses of urinary creatinine excretion, measured creatinine clearance and estimated glomerular filtration rate over 30 days of ICU admission [J]. J Crit Care, 2021, 63:161-166. doi:10.1016/j.jcrc.2020.09.017
doi: 10.1016/j.jcrc.2020.09.017
|
16 |
WONGPRAPHAIROT S, THONGRUEANG A, BHURAYANONTACHAI R. Glomerular filtration rate correlation and agreement between common predictive equations and standard 24-hour urinary creatinine clearance in medical critically ill patients [J]. PeerJ, 2022, 10:e13556. doi:10.7717/peerj.13556
doi: 10.7717/peerj.13556
|
17 |
DECLERCQ P, GIJSEN M, MEIJERS B, et al. Reliability of serum creatinine-based formulae estimating renal function in non-critically ill surgery patients: Focus on augmented renal clearance [J]. J Clin Pharm Ther, 2018, 43(5):695-706. doi:10.1111/jcpt.12695
doi: 10.1111/jcpt.12695
|
18 |
CARLIER M, DUMOULIN A, JANSSEN A, et al. Comparison of different equations to assess glomerular filtration in critically ill patients [J]. Intensive Care Med, 2015, 41(3):427-435. doi:10.1007/s00134-014-3641-9
doi: 10.1007/s00134-014-3641-9
|
19 |
GROOTAERT V, WILLEMS L, DEBAVEYE Y, et al. Augmented renal clearance in the critically ill: How to assess kidney function [J]. Ann Pharmacother, 2012, 46(7-8):952-959. doi:10.1345/aph.1q708
doi: 10.1345/aph.1q708
|
20 |
ESTEVES F P, HALKAR R K, ISSA M M, et al. Comparison of camera-based 99mTc-MAG3 and 24-hour creatinine clearances for evaluation of kidney function [J]. AJR Am J Roentgenol, 2006, 187(3): W316-W319. doi:10.2214/ajr.05.1025
doi: 10.2214/ajr.05.1025
|
21 |
DU BOIS D, DU BOIS E F. A formula to estimate the approximate surface area if height and weight be known. 1916 [J]. Nutrition, 1989, 5(5): 303-311; discussion 312-313.
|
22 |
HEFNY F, STUART A, KUNG J Y, et al. Prevalence and Risk Factors of Augmented Renal Clearance: A Systematic Review and Meta-Analysis [J]. Pharmaceutics, 2022, 14(2):445. doi:10.3390/pharmaceutics14020445
doi: 10.3390/pharmaceutics14020445
|
23 |
Disease Kidney : Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease [J]. Kidney Int, 2024, 105(4S):S117-S314.
|
24 |
HOSTE E A J, KELLUM J A, SELBY N M, et al. Global epidemiology and outcomes of acute kidney injury [J]. Nat Rev Nephrol, 2018, 14(10):607-625. doi:10.1038/s41581-018-0052-0
doi: 10.1038/s41581-018-0052-0
|
25 |
KELLUM J A, ROMAGNANI P, ASHUNTANTANG G, et al. Acute kidney injury [J]. Nat Rev Dis Primers, 2021, 7(1):52. doi:10.1038/s41572-021-00291-0
doi: 10.1038/s41572-021-00291-0
|
26 |
MATSUURA R, DOI K, RABB H. Acute kidney injury and distant organ dysfunction-network system analysis [J]. Kidney Int, 2023, 103(6):1041-1055. doi:10.1016/j.kint.2023.03.025
doi: 10.1016/j.kint.2023.03.025
|
27 |
BLANCO V E, HERNANDORENA C V, SCIBONA P, et al. Acute Kidney Injury Pharmacokinetic Changes and Its Impact on Drug Prescription [J]. Healthcare (Basel), 2019, 7(1): 10. doi:10.3390/healthcare7010010
doi: 10.3390/healthcare7010010
|
28 |
MORBITZER K A, RHONEY D H, DEHNE K A, et al. Enhanced renal clearance in patients with hemorrhagic stroke [J]. Crit Care Med, 2019, 47(6): 800-808. doi:10.1097/ccm.0000000000003716
doi: 10.1097/ccm.0000000000003716
|
29 |
CARRIE C, BENTEJAC M, COTTENCEAU V, et al. Association between augmented renal clearance and clinical failure of antibiotic treatment in brain-injured patients with ventilator-acquired pneumonia: A preliminary study [J]. Anaesth Crit Care Pain Med, 2018, 37(1): 35-41. doi:10.1016/j.accpm.2017.06.006
doi: 10.1016/j.accpm.2017.06.006
|
30 |
INKER L A, TITAN S. Measurement and Estimation of GFR for Use in Clinical Practice: Core Curriculum 2021 [J]. Am J Kidney Dis, 2021, 78(5): 736-749. doi:10.1053/j.ajkd.2021.04.016
doi: 10.1053/j.ajkd.2021.04.016
|
31 |
XIE P, HUANG J M, LIN H Y, et al. CKD-EPI equation may be the most proper formula based on creatinine in determining glomerular filtration rate in Chinese patients with chronic kidney disease [J]. Int Urol Nephrol, 2013, 45(4): 1057-1064. doi:10.1007/s11255-012-0325-7
doi: 10.1007/s11255-012-0325-7
|
32 |
YAN C, WU B, ZENG M, et al. Comparison of different equations for estimated glomerular filtration rate in Han Chinese patients with chronic kidney disease [J]. Clin Nephrol, 2019, 91(5):301-310. doi:10.5414/cn109420
doi: 10.5414/cn109420
|
33 |
HU J, XU X, ZHANG K, et al. Comparison of estimated glomerular filtration rates in Chinese patients with chronic kidney disease among serum creatinine-, cystatin-C- and creatinine-cystatin-C-based equations: A retrospective cross-sectional study [J]. Clin Chim Acta, 2020, 505:34-42. doi:10.1016/j.cca.2020.01.033
doi: 10.1016/j.cca.2020.01.033
|
34 |
李浩源, 孙叶丽, 周萍. 肾小球滤过率评估公式的优缺点及适用性 [J]. 实用医学杂志, 2021, 37(11): 1494-1498. doi:10.3969/j.issn.1006-5725.2021.11.025
doi: 10.3969/j.issn.1006-5725.2021.11.025
|
35 |
LEVEY A S, CORESH J, BALK E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification [J]. Ann Intern Med, 2003, 139(2): 137-147. doi:10.7326/0003-4819-139-2-200307150-00013
doi: 10.7326/0003-4819-139-2-200307150-00013
|
36 |
MACÍAS LB, POBLET M S, JEREZ R I, et al. Study of renal function in living kidney donors: Estimated or measured glomerular filtration [J]. Transplant Proc, 2013, 45(10):3612-3615. doi:10.1016/j.transproceed.2013.10.022
doi: 10.1016/j.transproceed.2013.10.022
|
37 |
RULE A D, LARSON T S, BERGSTRALH E J, et al. Using serum creatinine to estimate glomerular filtration rate: Accuracy in good health and in chronic kidney disease [J]. Ann Intern Med, 2004, 141(12): 929-937. doi:10.7326/0003-4819-141-12-200412210-00009
doi: 10.7326/0003-4819-141-12-200412210-00009
|
38 |
BEIERWALTES W H, HARRISON-BERNARD L M, SULLIVAN J C, et al. Assessment of Renal Function; Clearance, the Renal Microcirculation, Renal Blood Flow, and Metabolic Balance [J]. Compr Physiol, 2013, 3(1): 165-200. doi:10.1002/j.2040-4603.2013.tb00489.x
doi: 10.1002/j.2040-4603.2013.tb00489.x
|
39 |
FONTSERÉ N, BONAL J, SALINAS I, et al. Is the new Mayo Clinic Quadratic equation useful for the estimation of glomerular filtration rate in type 2 diabetic patients? [J]. Diabetes Care, 2008, 31(12):2265-2267. doi:10.2337/dc08-0958
doi: 10.2337/dc08-0958
|
40 |
XIA F, HAO W, LIANG J, et al. Applicability of Creatinine-based equations for estimating glomerular filtration rate in elderly Chinese patients [J]. BMC Geriatr, 2021,21(1):481. doi:10.1186/s12877-021-02428-y
doi: 10.1186/s12877-021-02428-y
|
41 |
BAPTISTA J P, UDY A A, SOUSA E, et al. A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance [J]. Crit Care, 2011, 15(3): R139. doi:10.1186/cc10262
doi: 10.1186/cc10262
|