实用医学杂志 ›› 2025, Vol. 41 ›› Issue (10): 1590-1596.doi: 10.3969/j.issn.1006-5725.2025.10.023
• 综述 • 上一篇
收稿日期:
2025-01-09
出版日期:
2025-05-25
发布日期:
2025-05-21
通讯作者:
刘刚
E-mail:lg2781@smu.edu.cn
基金资助:
Guizhi KE,Yu HUANG,Liping FU,Binhua ZOU,Gang. LIU()
Received:
2025-01-09
Online:
2025-05-25
Published:
2025-05-21
Contact:
Gang. LIU
E-mail:lg2781@smu.edu.cn
摘要:
细胞外基质是关节软骨的重要组成部分,在既往研究中更多地被认为是支撑软骨细胞的支架结构,提供机械负荷和弹性压缩的保护。随着研究的不断进展,大量文献表明,细胞外基质具有动态性质,响应其局部微环境的改变进行组分的降解、沉积、释放,进而对软骨细胞的功能和命运起到动态调节的作用。因此,该文概述了骨关节炎中,基质和软骨细胞的相互作用关系对软骨细胞的行为和关节稳态的影响。希望对基质-细胞互易关系的系统阐述能为骨关节炎的病理机制和软骨组织工程的设计构建提供新的见解。具体来说,该文先总结了组成细胞外基质的典型分子组件及其在基质中赋予的机械性能和软骨细胞中发挥的机械转导功能。接着,讨论了在骨关节炎进程中,软骨细胞在局部微环境中异常机械负荷或创伤的干扰下,对基质组件的合成分解产生的负面影响。最后,该文重点阐述了异常重塑的细胞外基质通过介导生物活性分解片段的生成,调节细胞因子的释放及机械特性的改变对软骨细胞信号转导及骨关节炎病理进展的影响。
中图分类号:
柯桂芝,黄煜,富丽萍,邹斌华,刘刚. 基质-软骨细胞的相互作用关系在骨关节炎中的研究进展[J]. 实用医学杂志, 2025, 41(10): 1590-1596.
Guizhi KE,Yu HUANG,Liping FU,Binhua ZOU,Gang. LIU. Research progress on matrix⁃chondrocyte interactions in osteoarthritis[J]. The Journal of Practical Medicine, 2025, 41(10): 1590-1596.
1 |
OZEKI N, KOGA H, SEKIYA I. Degenerative Meniscus in Knee Osteoarthritis: From Pathology to Treatment[J]. Life (Basel), 2022, 12(4):603. doi:10.3390/life12040603
doi: 10.3390/life12040603 |
2 |
XIE J, LI S, SONG Z, et al. Functional Monitoring of Patients With Knee Osteoarthritis Based on Multidimensional Wearable Plantar Pressure Features: Cross-Sectional Study[J]. JMIR Aging, 2024, 7:e58261. doi:10.2196/58261
doi: 10.2196/58261 |
3 |
WANG F, CAO Y, LU H, et al. Osteoarthritis Incidence Trends Globally, Regionally, and Nationally, 1990-2019: An Age‐Period‐Cohort Analysis[J]. Musculoskeletal Care, 2025, 23(1): e70045. doi:10.1002/msc.70045
doi: 10.1002/msc.70045 |
4 |
ZHANG Y, WANG X, CHEN J, et al. Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis[J]. J Nanobiotechnol, 2022, 20(1): 56. doi:10.1186/s12951-022-01245-8
doi: 10.1186/s12951-022-01245-8 |
5 |
EL-SAID K S, ATTA A, MOBASHER M A, et al. Quercetin mitigates rheumatoid arthritis by inhibiting adenosine deaminase in rats[J]. Mol Med, 2022, 28(1): 24. doi:10.1186/s10020-022-00432-5
doi: 10.1186/s10020-022-00432-5 |
6 |
YEO C, AHN C R, KIM J E, et al. Chaenomeles Fructus (CF), the Fruit of Chaenomeles sinensis Alleviates IL-1β Induced Cartilage Degradation in Rat Articular Chondrocytes[J]. Int J Mol Sci, 2022, 23(8): 4360. doi:10.3390/ijms23084360
doi: 10.3390/ijms23084360 |
7 |
VINCENT T L, WANN A K T. Mechanoadaptation: articular cartilage through thick and thin[J]. J Physiol, 2019, 597(5): 1271-1281. doi:10.1113/jp275451
doi: 10.1113/jp275451 |
8 |
WEI Q, ZHANG X, ZHOU C, et al. Roles of large aggregating proteoglycans in human intervertebral disc degeneration[J]. Connect Tissue Res, 2019, 60(3): 209-218. doi:10.1080/03008207.2018.1499731
doi: 10.1080/03008207.2018.1499731 |
9 |
BROWN S B, HORNYAK J A, JUNGELS R R, et al. Characterization of Post‐Traumatic Osteoarthritis in Rats Following Anterior Cruciate Ligament Rupture by Non‐Invasive Knee Injury (NIKI)[J]. J Orthop Res, 2020, 38(2): 356-367. doi:10.1002/jor.24470
doi: 10.1002/jor.24470 |
10 |
CHANALARIS A, CLARKE H, GUIMOND S E, et al. Heparan Sulfate Proteoglycan Synthesis Is Dysregulated in Human Osteoarthritic Cartilage[J]. Am J Pathol, 2019, 189(3): 632-647. doi:10.1016/j.ajpath.2018.11.011
doi: 10.1016/j.ajpath.2018.11.011 |
11 |
LOPEZ S G, BONASSAR L J. The role of SLRPs and large aggregating proteoglycans in collagen fibrillogenesis, extracellular matrix assembly, and mechanical function of fibrocartilage[J]. Connect Tissue Res, 2022, 63(3): 269-286. doi:10.1080/03008207.2021.1903887
doi: 10.1080/03008207.2021.1903887 |
12 |
HAN B, LI Q, WANG C, et al. Differentiated activities of decorin and biglycan in the progression of post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(8): 1181-1192. doi:10.1016/j.joca.2021.03.019
doi: 10.1016/j.joca.2021.03.019 |
13 |
MELROSE L, FULLER E S, ROUGHLEY P J, et al. Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilage compared with age⁃matched macroscopically hormal and control tissues[J]. Arthritis Res Ther, 2008,10(4):R79. doi:10.1186/ar2453
doi: 10.1186/ar2453 |
14 |
SALMINEN A. Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases[J]. J Mol Med (Berl), 2021, 99(1): 1-20. doi:10.1007/s00109-020-01988-7
doi: 10.1007/s00109-020-01988-7 |
15 |
MONACO G, QAWASMI F, EL HAJ A J, et al. Chondrogenic differentiation of human bone marrow MSCs in osteochondral implants under kinematic mechanical load is dependent on the underlying osteo component[J]. Front Bioeng Biotechnol, 2022, 10: 998774. doi:10.3389/fbioe.2022.998774
doi: 10.3389/fbioe.2022.998774 |
16 |
TSENG H C, WU M R, LEE C H, et al. Differentiation Capacity of Bone Marrow-Derived Rat Mesenchymal Stem Cells from DsRed and Cre Transgenic Cre/loxP Models[J]. Cells, 2022, 11(17): 2769. doi:10.3390/cells11172769
doi: 10.3390/cells11172769 |
17 |
CHEN L, WEI K, LI J, et al. Integrated Analysis of LncRNA-Mediated ceRNA Network in Calcific Aortic Valve Disease[J]. Cells, 2022, 11(14): 2204. doi:10.3390/cells11142204
doi: 10.3390/cells11142204 |
18 |
ARMIENTO A R, ALINI M, STODDART M J. Articular fibrocartilage-Why does hyaline cartilage fail to repair?[J]. Adv Drug Deliv Rev, 2019, 146: 289-305. doi:10.1016/j.addr.2018.12.015
doi: 10.1016/j.addr.2018.12.015 |
19 |
GAN K, LIAN H, YANG T, et al. Periplogenin attenuates LPS-mediated inflammatory osteolysis through the suppression of osteoclastogenesis via reducing the NF-κB and MAPK signaling pathways[J]. Cell Death Discovery, 2024, 10(1): 86. doi:10.1038/s41420-024-01856-0
doi: 10.1038/s41420-024-01856-0 |
20 |
EVERS B J, VAN DEN BOSCH M H J, BLOM A B, et al. Post-traumatic knee osteoarthritis; the role of inflammation and hemarthrosis on disease progression[J]. Front Med (Lausanne), 2022, 9: 973870. doi:10.3389/fmed.2022.973870
doi: 10.3389/fmed.2022.973870 |
21 |
AVENOSO A, D′ASCOLA A, SCURUCHI M, et al. Hyaluronan in the experimental injury of the cartilage: biochemical action and protective effects[J]. Inflamm Res, 2018, 67(1): 5-20. doi:10.1007/s00011-017-1084-9
doi: 10.1007/s00011-017-1084-9 |
22 |
SUZUKI M, TAKAHASHI N, SOBUE Y, et al. Hyaluronan suppresses enhanced cathepsin K expression via activation of NF-κB with mechanical stress loading in a human chondrocytic HCS-2/8 cells[J]. Sci Rep, 2020, 10(1): 216. doi:10.1038/s41598-019-57073-8
doi: 10.1038/s41598-019-57073-8 |
23 |
ROEDIG H, NASTASE M V, WYGRECKA M, et al. Breaking down chronic inflammatory diseases: The role of biglycan in promoting a switch between inflammation and autophagy[J]. FEBS J, 2019, 286(15): 2965-2979. doi:10.1111/febs.14791
doi: 10.1111/febs.14791 |
24 |
AVENOSO A, D’ASCOLA A, SCURUCHI M, et al. The proteoglycan biglycan mediates inflammatory response by activating TLR-4 in human chondrocytes: Inhibition by specific siRNA and high polymerized Hyaluronan[J]. Arch Biochem Biophys, 2018, 640: 75-82. doi:10.1016/j.abb.2018.01.007
doi: 10.1016/j.abb.2018.01.007 |
25 |
ZHAO F, BAI Y, XIANG X, et al. The role of fibromodulin in inflammatory responses and diseases associated with inflammation[J]. Front Immunol, 2023, 14: 1191787. doi:10.3389/fimmu.2023.1191787
doi: 10.3389/fimmu.2023.1191787 |
26 |
LAMBERT C, ZAPPIA J, SANCHEZ C, et al. The Damage-Associated Molecular Patterns (DAMPs) as Potential Targets to Treat Osteoarthritis: Perspectives From a Review of the Literature[J]. Front Med (Lausanne), 2021, 7: 607186. doi:10.3389/fmed.2020.607186
doi: 10.3389/fmed.2020.607186 |
27 |
WANG Y, LI L, WEI Q, et al. Design, Preparation, and Bioactivity Study of New Fusion Protein HB-NC4 in the Treatment of Osteoarthritis[J]. Front Bioeng Biotechnol, 2021, 9: 700064. doi:10.3389/fbioe.2021.700064
doi: 10.3389/fbioe.2021.700064 |
28 |
AHANGAR P, MILLS S J, COWIN A J. Mesenchymal Stem Cell Secretome as an Emerging Cell-Free Alternative for Improving Wound Repair[J]. Int J Mol Sci, 2020, 21(19): 7038. doi:10.3390/ijms21197038
doi: 10.3390/ijms21197038 |
29 |
WU M, WU S, CHEN W, et al. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease[J]. Cell Res, 2024, 34(2): 101-123. doi:10.1038/s41422-023-00918-9
doi: 10.1038/s41422-023-00918-9 |
30 |
ORNITZ D M, MARIE P J. Fibroblast growth factors in skeletal development[J]. Curr Top Dev Biol, 2019, 133: 195-234. doi:10.1016/bs.ctdb.2018.11.020
doi: 10.1016/bs.ctdb.2018.11.020 |
31 |
WANG X, LU Y, WANG W, et al. Effect of different aged cartilage ECM on chondrogenesis of BMSCs in vitro and in vivo[J]. Regen Biomater, 2020, 7(6): 583-595. doi:10.1093/rb/rbaa028
doi: 10.1093/rb/rbaa028 |
32 |
ZHANG W, LIN Z, SHI F, et al. HSPG2 Mutation Association with Immune Checkpoint Inhibitor Outcome in Melanoma and Non-Small Cell Lung Cancer[J]. Cancers, 2022, 14(14): 3495. doi:10.3390/cancers14143495
doi: 10.3390/cancers14143495 |
33 |
LI L, MENG L, XU C Q, et al. Effect of cell receptors in the pathogenesis of osteoarthritis: Current insights[J]. Open Life Sci, 2022, 17(1): 695-709. doi:10.1515/biol-2022-0075
doi: 10.1515/biol-2022-0075 |
34 |
KONG K, LI B, CHANG Y, et al. Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence[J]. Nanobiotechnol, 2025, 23(1): 34. doi:10.1186/s12951-025-03103-9
doi: 10.1186/s12951-025-03103-9 |
35 |
XIANG P, LUO Z P, CHE Y J. Insights into the mechanical microenvironment within the cartilaginous endplate: An emerging role in maintaining disc homeostasis and normal function[J]. Heliyon, 2024, 10(10): e31162. doi:10.1016/j.heliyon.2024.e31162
doi: 10.1016/j.heliyon.2024.e31162 |
36 |
CHEN J, WANG N. Tissue cell differentiation and multicellular evolution via cytoskeletal stiffening in mechanically stressed microenvironments[J]. Acta Mech Sin, 2019, 35(2): 270-274. doi:10.1007/s10409-018-0814-8
doi: 10.1007/s10409-018-0814-8 |
37 |
LEWIS W, PADILLA-MARTINEZ J P, ORTEGA-MARTINEZ A, et al. Changes in endogenous UV fluorescence and biomechanical stiffness of bovine articular cartilage after collagenase digestion are strongly correlated[J]. J Biophotonics, 2017, 10(8): 1018-1025. doi:10.1002/jbio.201600093
doi: 10.1002/jbio.201600093 |
38 |
WANG S L, LIU X L, KANG Z C, et al. Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury[J]. Neural Regen Res, 2023, 18(2): 375. doi:10.4103/1673-5374.346461
doi: 10.4103/1673-5374.346461 |
39 | HUANG H, TAN Y, AYERS D C, et al. Anionic and Zwitterionic Residues Modulate Stiffness of Photo-Cross-Linked Hydrogels and Cellular Behavior of Encapsulated Chondrocytes[J]. ACS Biomater Sci Eng, 2018, 4(5):1843-1851. |
40 |
TAN S, FANG W, VANGSNESS C T, et al. Influence of Cellular Microenvironment on Human Articular Chondrocyte Cell Signaling[J]. Cartilage, 2021, 13(): 935S-946S. doi:10.1177/1947603520941219
doi: 10.1177/1947603520941219 |
41 |
FU B, SHEN J, ZOU X, et al. Matrix stiffening promotes chondrocyte senescence and the osteoarthritis development through downregulating HDAC3[J]. Bone Res, 2024, 12(1): 32. doi:10.1038/s41413-024-00333-9
doi: 10.1038/s41413-024-00333-9 |
42 |
WU D T, JEFFREYS N, DIBA M, et al. Viscoelastic biomaterials for tissue regeneration[J]. Tissue Eng Part C Methods, 2022, 28(7): 289-300. doi:10.1089/ten.tec.2022.0040
doi: 10.1089/ten.tec.2022.0040 |
43 |
RICHARDSON B M, WALKER C J, MAPLES M M, et al. Mechanobiological Interactions between Dynamic Compressive Loading and Viscoelasticity on Chondrocytes in Hydrazone Covalent Adaptable Networks for Cartilage Tissue Engineering[J]. Adv Healthcare Materials, 2021, 10(9): 2002030. doi:10.1002/adhm.202002030
doi: 10.1002/adhm.202002030 |
44 |
LIU D, ZHANG H, DONG X, et al. Effect of viscoelastic properties of cellulose nanocrystal/collagen hydrogels on chondrocyte behaviors[J]. Front Bioeng Biotechnol, 2022, 10: 959409. doi:10.3389/fbioe.2022.959409
doi: 10.3389/fbioe.2022.959409 |
45 |
AGARWAL P, LEE H P, SMERIGLIO P, et al. A dysfunctional TRPV4-GSK3β pathway prevents osteoarthritic chondrocytes from sensing changes in extracellular matrix viscoelasticity[J]. Nat Biomed Eng, 2021, 5(12): 1472-1484. doi:10.1038/s41551-021-00691-3
doi: 10.1038/s41551-021-00691-3 |
46 |
NÜRNBERGER S, SCHNEIDER C, KEIBL C, et al. Repopulation of decellularised articular cartilage by laser-based matrix engraving[J]. EBioMedicine, 2021, 64: 103196. doi:10.1016/j.ebiom.2020.103196
doi: 10.1016/j.ebiom.2020.103196 |
47 |
WANG Z, HAN L, SUN T, et al. Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits[J]. Acta Biomater, 2020, 118: 54-68. doi:10.1016/j.actbio.2020.10.022
doi: 10.1016/j.actbio.2020.10.022 |
48 |
JIANG S, TIAN G, YANG Z, et al. Enhancement of acellular cartilage matrix scaffold by wharton′s jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration[J]. Bioact Mater, 2021, 6(9): 2711-2728. doi:10.1016/j.bioactmat.2021.01.031
doi: 10.1016/j.bioactmat.2021.01.031 |
49 |
TANG Q, LIM T, SHEN L Y, et al. Well-dispersed platelet lysate entrapped nanoparticles incorporate with injectable PDLLA-PEG-PDLLA triblock for preferable cartilage engineering application[J]. Biomaterials, 2021, 268: 120605. doi:10.1016/j.biomaterials.2020.120605
doi: 10.1016/j.biomaterials.2020.120605 |
50 |
SESSA A, ROMANDINI I, ANDRIOLO L, et al. Treatment of Juvenile Knee Osteochondritis Dissecans with a Cell-Free Biomimetic Osteochondral Scaffold: Clinical and MRI Results at Mid-Term Follow-up[J]. Cartilage, 2021, 13(): 1137S-1147S. doi:10.1177/1947603520954500
doi: 10.1177/1947603520954500 |
51 |
COLE B J, HAUNSCHILD E D, CARTER T, et al. Clinically significant outcomes following the treatment of focal cartilage defects of the knee with microfracture augmentation using cartilage allograft extracellular matrix: A multicenter prospective study[J].J Arthrosc Relat Surg, 2021, 37(5): 1512-1521. doi:10.1016/j.arthro.2021.01.043
doi: 10.1016/j.arthro.2021.01.043 |
[1] | 林爱桃,黄志敏,张知英,付庭娜,陆良喜,刘晓羽,江旖旎,赵蕾蕾,吴金玉. miRNA-155-5P靶向调控SOCS1调节JAK2/STAT3信号通路对狼疮性肾炎肾脏损伤的影响[J]. 实用医学杂志, 2025, 41(9): 1285-1292. |
[2] | 唐利,巩玉荣,曾立叶,高艳芳,邓成哲. 3.0 T磁共振T2 mapping序列联合血清新饱食分子蛋白1水平检测在老年膝关节早期骨关节炎诊断中的应用价值[J]. 实用医学杂志, 2025, 41(8): 1238-1242. |
[3] | 李锡,任晓颖,焦永伟,孙志鹏,尹世林,张泽坤,高天慈,王静西,张永旺,刘路,杜双庆. 髋-膝-踝主、被动运动疗法对早、中期膝骨关节炎患者的疗效[J]. 实用医学杂志, 2025, 41(6): 829-837. |
[4] | 龙嗣博,陈燕,张鑫桐,尹颜军,杨丽梅,郑迈克,王潮虹,孙晴,晏君,施亦衡,时广利,赵艳,王桂荣. 新型冠状病毒感染者入院时血清降钙素原、白细胞介素-6和白细胞介素-8水平及其在患者预后中的意义[J]. 实用医学杂志, 2024, 40(4): 471-475. |
[5] | 邹波,朱龙川,甘达凯,张鑫垚,姚雪兵. 低置换量血浆置换术联合双重血浆分子吸附术治疗慢加急性肝衰竭患者短期预后的结果[J]. 实用医学杂志, 2024, 40(3): 348-352. |
[6] | 贾祥,徐田杰,樊佳欣,郭小玲,刘凯楠,张辉,王永生,王茜. 二甲双胍通过激活SIRT1/p53信号通路对骨关节炎大鼠关节软骨发挥保护作用[J]. 实用医学杂志, 2024, 40(23): 3306-3316. |
[7] | 宋雨珂,徐金凡,何晓铭,林天烨,何敏聪,邵敏,魏秋实. 髌下脂肪垫高信号强度对膝骨关节炎症状及结构的相关性[J]. 实用医学杂志, 2024, 40(23): 3373-3378. |
[8] | 邓刚,朱立新,郭家松,许逸舟. 中药小分子治疗骨关节炎的研究进展[J]. 实用医学杂志, 2024, 40(23): 3389-3393. |
[9] | 夏志杰,李隽,郜倩,李志成,夏忠芳. 双切口隧道法联合耳前组织及软骨整块切除治疗耳前瘘管的效果及预后[J]. 实用医学杂志, 2024, 40(22): 3179-3183. |
[10] | 李锡,张健,刘郭辉,刘云昊,张泽坤,高天慈,王静西,张永旺,尹世林,刘路,齐立卿,杜双庆. 脊柱-骨盆-下肢力线正骨手法治疗膝骨关节炎的疗效评价[J]. 实用医学杂志, 2024, 40(17): 2495-2502. |
[11] | 张玉红,单新洁,周俊. miR-155通过SOCS1/STAT3途径调控类风湿性关节炎中炎症反应和Th17/Treg失衡[J]. 实用医学杂志, 2024, 40(13): 1791-1796. |
[12] | 李亮 周正新 李文华 刘涛 朱磊 康金平 . 益气养营汤在人工膝关节置换围手术期临床疗效 [J]. 实用医学杂志, 2023, 39(7): 904-909. |
[13] | 刘君晗 关凤军 程巾 庄亚飞 石梦月 袁文君 陆书文 . 激素敏感型肾病综合征患儿记忆T淋巴细胞亚群精细分型的临床意义 [J]. 实用医学杂志, 2023, 39(4): 436-441. |
[14] | 杨幸乐,夏婷婷,左春磊,史家欣. 微生物学快速现场评价在重症肺炎中的应用价值[J]. 实用医学杂志, 2023, 39(22): 2964-2968. |
[15] | 涂海涛,庄珣,庄礼兴,范正鹏,潘瑜. 火针对膝关节骨关节炎血清白细胞介素-1β和肿瘤坏死因子-α的影响及疗效观察[J]. 实用医学杂志, 2023, 39(22): 3000-3004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||