1 |
SIEGEL R L, MILLER K D, SAUER A G,et al.Colorectal cancer statistics, 2020[J].CA Cancer J Clin, 2020, 70(3):145-164. doi:10.3322/caac.21601
doi: 10.3322/caac.21601
|
2 |
国家卫生健康委员会医政司, 中华医学会肿瘤学分会. 国家卫健委中国结直肠癌诊疗规范(2023版)[J]. 中国实用外科杂志, 2023, 43(6): 602-630. doi:10.19538/j.cjps.issn1005-2208.2023.06.02
doi: 10.19538/j.cjps.issn1005-2208.2023.06.02
|
3 |
中华医学会肿瘤学会结直肠肿瘤学组. 直肠癌外科手术切缘中国专家共识(2024版)[J]. 中华胃肠外科杂志, 2024, 27(6):545-558.
|
4 |
解园,靳语书,辛鑫,等. 肿瘤代谢相关治疗靶点及药物研究进展[J].肿瘤学杂志, 2023, 29(9):783-786.
|
5 |
郑一帆,黄咏彤,张永成,等. 氨基酸代谢重编程在肿瘤细胞及肿瘤相关巨噬细胞极化中的作用研究进展[J]. 山东医药, 2023, 63(12):111-114.
|
6 |
陈惠,乔瑞,韩萌,等. 肿瘤中糖代谢重编程的研究进展[J].宁夏医科大学学报, 2022, 44(11):1170-1175.
|
7 |
LUO X, TU Z, CHEN H, et al. Blood lipids and risk of colon or rectal cancer: A Mendelian randomization study[J]. J Cancer Res Clin Oncol, 2021, 147(12):3591-3599. doi:10.1007/s00432-021-03790-5
doi: 10.1007/s00432-021-03790-5
|
8 |
RESEARCH AND PRACTICE G. Retracted: The Effect and Related Mechanism of Action of Astragalus Compatible with Curcumin against Colon Cancer Metastasis in Mice[J]. Gastroenterol Res Pract, 2023, 2023:9793254. doi:10.1155/2023/9793254
doi: 10.1155/2023/9793254
|
9 |
WANG X, PAN S, CHEN L, et al. Sijunzi decoction enhances sensitivity of colon cancer cells to NK cell destruction by modulating P53 expression[J]. J Ethnopharmacol, 2024, 329:118115. doi:10.1016/j.jep.2024.118115
doi: 10.1016/j.jep.2024.118115
|
10 |
SUN X, HONG Y, SHU Y, et al.The involvement of Parkin-dependent mitophagy in the anti-cancer activity of Ginsenoside[J]. J Ginseng Res, 2022, 46(2):266-274. doi:10.1016/j.jgr.2021.06.009
doi: 10.1016/j.jgr.2021.06.009
|
11 |
李华,王捷虹. PI3K/Akt通路调控结直肠癌机制及中医药治疗研究进展[J]. 中国实验方剂学杂志, 2023,29(13):254-263.
|
12 |
陈宣,刘红宁,尚广彬,等. 养阴化瘀解毒方通过PI3K/Akt信号通路调控低氧环境下结肠癌细胞的自噬和凋亡[J]. 中国实验方剂学杂志, 2023,29(20):45-53.
|
13 |
南京中医药大学. 中药大辞典[M]. 上海: 上海科学技术出版社, 2006: 2459-2463.
|
14 |
潘峰,刘迪,黄翠霞,等.绞股蓝皂甙的药理与临床研究[J].现代中西医结合杂志, 2006, 15(5):674-676.
|
15 |
YAN H, WANG X, NIU J, et al. Anti-cancer effect and the underlying mechanisms of gypenosides on human colorectal cancer SW-480 cells[J]. PLoS One, 2014, 9(4):e95609. doi:10.1371/journal.pone.0095609
doi: 10.1371/journal.pone.0095609
|
16 |
ZU M L, DUAN Y, XIE J B, et al. Gypenoside LIarrests the cell cycle of breast cancer in G0/G1 phase by down-regulating E2F1[J].J Ethnopharmacol, 2021,273:114017. doi:10.1016/j.jep.2021.114017
doi: 10.1016/j.jep.2021.114017
|
17 |
LIU L, MO M, CHEN X, et al. Targeting inhibition of prognosis-related lipid metabolism genes including CYP19A1 enhances immunotherapeutic response in colon cancer[J]. J Exp Clin Cancer Res,2023,42(1):85. doi:10.1186/s13046-023-02647-8
doi: 10.1186/s13046-023-02647-8
|
18 |
JIANG C, LIU Y, WEN S, et al. In silico development and clinical validation of novel 8 gene signature based on lipid metabolism related genes in colon adenocarcinoma[J]. Pharmacol Res,2021,169:105644. doi:10.1016/j.phrs.2021.105644
doi: 10.1016/j.phrs.2021.105644
|
19 |
WANG Y, LU J, WANG F, et al. Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers[J]. Cancer Lett,2020,473:74-89. doi:10.1016/j.canlet.2019.12.036
doi: 10.1016/j.canlet.2019.12.036
|
20 |
ABUDUREXITI M, ZHU W, WANG Y,et al. Targeting CPT1B as a potential therapeutic strategy in castration‐resistant and enzalutamide‐resistant prostate cancer[J]. Prostate, 2020, 80(12):950-961. doi:10.1002/pros.24027
doi: 10.1002/pros.24027
|
21 |
MENENDEZ J A, LUOU R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis[J]. Nat Rev Cancer,2007,7(10):763-777. doi:10.1038/nrc2222
doi: 10.1038/nrc2222
|
22 |
XIONG X, WEN Y A, FAIRCHILD R, et al. Upregulation of CPT1A is essential for the tumor-promoting effect of adipocytes in colon cancer[J]. Cell Death Dis, 2020, 11 (9): 736-736. doi:10.1038/s41419-020-02936-6
doi: 10.1038/s41419-020-02936-6
|
23 |
CHAVES-FILHO A B, PEIXOTO A S, CASTRO É, et al. Futile cycle of β-oxidation and de novo lipogenesis are associated with essential fatty acids depletion in lipoatrophy [J]. Biochim Biophys Acta Mol Cell Biol, 2023, 1868 (3): 159264. doi:10.1016/j.bbalip.2022.159264
doi: 10.1016/j.bbalip.2022.159264
|
24 |
WANG Y N, ZENG Z L, LU J, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis [J]. Oncogene, 2018, 37 (46): 6025-6040. doi:10.1038/s41388-018-0384-z
doi: 10.1038/s41388-018-0384-z
|
25 |
WENG L, TANG W S, WANG X, et al. Surplus fatty acid synthesis increases oxidative stress in adipocytes and lnduces lipodystrophy[J]. Nat Commun, 2024, 15 (1): 133. doi:10.1038/s41467-023-44393-7
doi: 10.1038/s41467-023-44393-7
|
26 |
SERENA C, FABIO C, PAMELA F D, et al. Adaptive antioxidant response to mitochondrial fatty acid oxidation determines the proliferative outcome of cancer cells[J]. Cancer Lett, 2023, 554:216010. doi:10.1016/j.canlet.2022.216010
doi: 10.1016/j.canlet.2022.216010
|
27 |
BULBUL A, SYLVANUS K, MUHAMMAD K, et al. Rg3 inhibits gemcitabine-induced lung cancer cell invasiveness through ROS-dependent, NF-κB- and HIF-1α-mediated downregulation of PTX3[J]. J Cell Physiol, 2019, 234(7): 10680-10697. doi:10.1002/jcp.27731
doi: 10.1002/jcp.27731
|
28 |
HEDIEH K, REZA M S, HOSSEIN M G, et al. Acetyl-L-Carnitine Attenuates Arsenic-Induced Oxidative Stress and Hippocampal Mitochondrial Dysfunction[J]. Biol Trace Elem Res, 2017, 184 (2): 422-435. doi:10.1007/s12011-017-1210-0
doi: 10.1007/s12011-017-1210-0
|