实用医学杂志 ›› 2024, Vol. 40 ›› Issue (22): 3119-3123.doi: 10.3969/j.issn.1006-5725.2024.22.001
• 述评 • 下一篇
收稿日期:
2024-08-01
出版日期:
2024-11-25
发布日期:
2024-11-25
通讯作者:
钟仁明
E-mail:zrm_100@163.com
作者简介:
基金资助:
Huiling YE1,2,Renming. ZHONG1()
Received:
2024-08-01
Online:
2024-11-25
Published:
2024-11-25
Contact:
Renming. ZHONG
E-mail:zrm_100@163.com
摘要:
在原发性肝癌和转移性肝癌治疗中,可以采用立体定向放射治疗技术(SBRT)给予肿瘤高剂量以达到消融治疗的效果。由于SBRT单次高剂量的特点,使其对放疗精度有更高的要求。尤其是肝癌受摆位误差与呼吸运动的影响,需要同时使用呼吸运动管理和影像引导。然而,现有研究者报道的放疗精度验证均使用模体进行间接验证,而不是在患者治疗实施过程中进行在体验证,使得最终的治疗精度受到怀疑。肝脏在接受一定放射治疗剂量后会在磁共振影像中呈现相应的形态学改变,可以反映放射治疗的精度。该文将就肝癌体部立体定向放射治疗后磁共振影像改变的发生原理、表现形式和出现时间、精度评价方式、临床困境及未来发展方向进行讨论分析。
中图分类号:
叶惠玲,钟仁明. 磁共振影像学改变评估肝癌立体定向放疗精度的研究进展[J]. 实用医学杂志, 2024, 40(22): 3119-3123.
Huiling YE,Renming. ZHONG. Progress in assessing the treatment accuracy of liver stereotactic body radiotherapy through post-therapeutic magnetic resonance imaging morphologic alterations[J]. The Journal of Practical Medicine, 2024, 40(22): 3119-3123.
1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660 |
2 |
郑荣寿, 张思维, 孙可欣, 等. 2016年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2023, 45(3): 212-220. doi:10.3760/cma.j.cn112152-20220922-00647
doi: 10.3760/cma.j.cn112152-20220922-00647 |
3 |
HORN S R, STOLTZFUS K C, LEHRER E J, et al. Epidemiology of liver metastases[J]. Cancer Epidemiol, 2020, 67: 101760. doi:10.1016/j.canep.2020.101760
doi: 10.1016/j.canep.2020.101760 |
4 |
PALMA D A, OLSON R, HARROW S, et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): A randomised, phase 2, open-label trial[J]. Lancet, 2019, 393(10185): 2051-2058. doi:10.1016/s0140-6736(18)32487-5
doi: 10.1016/s0140-6736(18)32487-5 |
5 |
CLERICI E, COMITO T, FRANZESE C, et al. Role of stereotactic body radiation therapy in the treatment of liver metastases: Clinical results and prognostic factors[J]. Strahlenther Onkol, 2020, 196(4): 325-333. doi:10.1007/s00066-019-01524-8
doi: 10.1007/s00066-019-01524-8 |
6 |
MÉNDEZ ROMERO A, SCHILLEMANS W, VAN OS R, et al. The Dutch-Belgian Registry of Stereotactic Body Radiation Therapy for Liver Metastases: Clinical Outcomes of 515 Patients and 668 Metastases[J]. Int J Radiat Oncol Biol Phys, 2021, 109(5): 1377-1386. doi:10.1016/j.ijrobp.2020.11.045
doi: 10.1016/j.ijrobp.2020.11.045 |
7 |
ZHANG X, WANG X, LI X, et al. Evaluating the impact of possible interobserver variability in CBCT-based soft-tissue matching using TCP/NTCP models for prostate cancer radiotherapy[J]. Radiat Oncol, 2022, 17(1): 62. doi:10.1186/s13014-022-02034-1
doi: 10.1186/s13014-022-02034-1 |
8 |
VAN DE LINDT T N, FAST M F, VAN DEN WOLLENBERG W, et al. Validation of a 4D-MRI guided liver stereotactic body radiation therapy strategy for implementation on the MR-linac[J]. Phys Med Biol, 2021, 66(10): 105010. doi:10.1088/1361-6560/abfada
doi: 10.1088/1361-6560/abfada |
9 |
HENZEN D, SCHMIDHALTER D, GUYER G, et al. Feasibility of postoperative spine stereotactic body radiation therapy in proximity of carbon and titanium hybrid implants using a robotic radiotherapy device[J]. Radiat Oncol, 2022, 17(1): 94. doi:10.1186/s13014-022-02058-7
doi: 10.1186/s13014-022-02058-7 |
10 |
BODA-HEGGEMANN J, JAHNKE A, CHAN M K H, et al. In-vivo treatment accuracy analysis of active motion-compensated liver SBRT through registration of plan dose to post-therapeutic MRI-morphologic alterations[J]. Radiother Oncol, 2019, 134: 158-165. doi:10.1016/j.radonc.2019.01.023
doi: 10.1016/j.radonc.2019.01.023 |
11 |
LEE J, SHIN I S, YOON W S, et al. Comparisons between radiofrequency ablation and stereotactic body radiotherapy for liver malignancies: Meta-analyses and a systematic review[J]. Radiother Oncol, 2020, 145: 63-70. doi:10.1016/j.radonc.2019.12.004
doi: 10.1016/j.radonc.2019.12.004 |
12 |
PRICE T R, PERKINS S M, SANDRASEGARAN K, et al. Evaluation of response after stereotactic body radiotherapy for hepatocellular carcinoma[J]. Cancer, 2012, 118(12): 3191-3198. doi:10.1002/cncr.26404
doi: 10.1002/cncr.26404 |
13 |
HUANG W Y, JEN Y M, LEE M S, et al. Stereotactic body radiation therapy in recurrent hepatocellular carcinoma[J]. Int J Radiat Oncol Biol Phys, 2012, 84(2): 355-361. doi:10.1016/j.ijrobp.2011.11.058
doi: 10.1016/j.ijrobp.2011.11.058 |
14 |
VAN DAMS R, WU T C, KISHAN A U, et al. Ablative radiotherapy for liver tumors using stereotactic MRI-guidance: A prospective phase I trial[J]. Radiother Oncol, 2022, 170: 14-20. doi:10.1016/j.radonc.2021.06.005
doi: 10.1016/j.radonc.2021.06.005 |
15 |
SHARMA M, NANO T F, AKKATI M, et al. A systematic review and meta-analysis of liver tumor position variability during SBRT using various motion management and IGRT strategies[J]. Radiother Oncol, 2022, 166: 195-202. doi:10.1016/j.radonc.2021.11.022
doi: 10.1016/j.radonc.2021.11.022 |
16 |
KEALL P J, MAGERAS G S, BALTER J M, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76[J]. Med Phys, 2006, 33(10): 3874-3900. doi:10.1118/1.2349696
doi: 10.1118/1.2349696 |
17 |
OAR A, LINEY G, RAI R, et al. First experience of 4D-MRI for abdominal radiotherapy planning[M]// TANADINI-LANG S, GUCKENBERGER M. MReadings: MR in RT. 4th ed. Erlangen: Siemens Healthineers AG, 2019: 50-53. doi:10.1016/s0167-8140(18)30605-4
doi: 10.1016/s0167-8140(18)30605-4 |
18 |
WANG H, ZHENG X, SUN J, et al. 4D-MRI assisted stereotactic body radiation therapy for unresectable colorectal cancer liver metastases[J]. Clin Transl Radiat Oncol, 2024, 45: 100714. doi:10.1016/j.ctro.2023.100714
doi: 10.1016/j.ctro.2023.100714 |
19 |
MURRAY V, SIDDIQ S, CRANE C, et al. Movienet: Deep space-time-coil reconstruction network without k-space data consistency for fast motion-resolved 4D MRI[J]. Magn Reson Med, 2024, 91(2): 600-614. doi:10.1002/mrm.29892
doi: 10.1002/mrm.29892 |
20 |
FENG L. Live-view 4D GRASP MRI: A framework for robust real-time respiratory motion tracking with a sub-second imaging latency[J]. Magn Reson Med, 2023, 90(3): 1053-1068. doi:10.1002/mrm.29700
doi: 10.1002/mrm.29700 |
21 | 方键蓝, 方涌文, 刘镖水, 等. Catalyst HD光学体表引导发泡胶固定乳腺癌调强放疗摆位精度的研究[J]. 实用医学杂志, 2022, 38(5): 547-551. |
22 |
TAKAI K, WATANABE R, HYOGO K I, et al. Treatment outcome of localized prostate cancer using transperineal ultrasound image-guided radiotherapy[J]. Radiat Oncol, 2024, 19(1): 100. doi:10.1186/s13014-024-02490-x
doi: 10.1186/s13014-024-02490-x |
23 |
ABULIMITI M, YANG X, LI M, et al. Application of four-dimensional cone beam computed tomography in lung cancer radiotherapy[J]. Radiat Oncol, 2023, 18(1): 69. doi:10.1186/s13014-023-02259-8
doi: 10.1186/s13014-023-02259-8 |
24 |
BOLDRINI L, ROMANO A, MARIANI S, et al. MRI-guided stereotactic radiation therapy for hepatocellular carcinoma: A feasible and safe innovative treatment approach[J]. J Cancer Res Clin Oncol, 2021, 147(7): 2057-2068. doi:10.1007/s00432-020-03480-8
doi: 10.1007/s00432-020-03480-8 |
25 |
BORDEAU K, MICHALET M, DORION V, et al. A prospective registry study of stereotactic magnetic resonance guided radiotherapy (MRgRT) for primary liver tumors[J]. Radiother Oncol, 2023, 189: 109912. doi:10.1016/j.radonc.2023.109912
doi: 10.1016/j.radonc.2023.109912 |
26 |
HERFARTH K K, HOF H, BAHNER M L, et al. Assessment of focal liver reaction by multiphasic CT after stereotactic single-dose radiotherapy of liver tumors[J]. Int J Radiat Oncol Biol Phys, 2003, 57(2): 444-451. doi:10.1016/s0360-3016(03)00586-8
doi: 10.1016/s0360-3016(03)00586-8 |
27 |
SEIDENSTICKER M, SEIDENSTICKER R, MOHNIKE K, et al. Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: Tolerance dose of small liver volumes[J]. Radiat Oncol, 2011, 6: 40. doi:10.1186/1748-717x-6-40
doi: 10.1186/1748-717x-6-40 |
28 |
SEIDENSTICKER M, BURAK M, KALINSKI T, et al. Radiation-induced liver damage: Correlation of histopathology with hepatobiliary magnetic resonance imaging, a feasibility study[J]. Cardiovasc Intervent Radiol, 2015, 38(1): 213-221. doi:10.1007/s00270-014-0872-7
doi: 10.1007/s00270-014-0872-7 |
29 |
ASUNCION A, WALKER P M, BERTAUT A, et al. Prediction of prostate cancer recurrence after radiation therapy using multiparametric magnetic resonance imaging and spectroscopy: Assessment of prognostic factors on pretreatment imaging[J]. Quant Imaging Med Surg, 2022, 12(12): 5309-5325. doi:10.21037/qims-22-184
doi: 10.21037/qims-22-184 |
30 |
MAI Z, YANG Q, XU J, et al. Response evaluation of hepatocellular carcinoma treated with stereotactic body radiation therapy: Magnetic resonance imaging findings[J]. Quant Imaging Med Surg, 2023, 48(6): 1995-2007. doi:10.1007/s00261-023-03827-y
doi: 10.1007/s00261-023-03827-y |
31 |
OLSEN C C, WELSH J, KAVANAGH B D, et al. Microscopic and macroscopic tumor and parenchymal effects of liver stereotactic body radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2009, 73(5): 1414-1424. doi:10.1016/j.ijrobp.2008.07.032
doi: 10.1016/j.ijrobp.2008.07.032 |
32 |
BODA-HEGGEMANN J, JAHNKE A, CHAN M K H, et al. Direct dose correlation of MRI morphologic alterations of healthy liver tissue after robotic liver SBRT[J]. Strahlenther Onkol, 2018, 194(5): 414-424. doi:10.1007/s00066-018-1271-9
doi: 10.1007/s00066-018-1271-9 |
33 |
MASTROCOSTAS K, JANG H J, FISCHER S, et al. Imaging post-stereotactic body radiation therapy responses for hepatocellular carcinoma: Typical imaging patterns and pitfalls[J]. Abdom Radiol, 2019, 44(5): 1795-1807. doi:10.1007/s00261-019-01901-y
doi: 10.1007/s00261-019-01901-y |
34 |
SUN X L, JIANG X, KUANG Y, et al. Potential of Gd-EOB-DTPA as an imaging biomarker for liver injury estimation after radiation therapy[J]. Hepatobiliary Pancreat Dis Int, 2019, 18(4): 354-359. doi:10.1016/j.hbpd.2019.05.005
doi: 10.1016/j.hbpd.2019.05.005 |
35 |
SANUKI N, TAKEDA A, OKU Y, et al. Threshold Doses for Focal Liver Reaction After Stereotactic Ablative Body Radiation Therapy for Small Hepatocellular Carcinoma Depend on Liver Function: Evaluation on Magnetic Resonance Imaging With Gd-EOB-DTPA[J]. Int J Radiat Oncol Biol Phys, 2014, 88(2): 306-311. doi:10.1016/j.ijrobp.2013.10.045
doi: 10.1016/j.ijrobp.2013.10.045 |
36 |
DREHER C, SARRIA G R, MIEBACH G, et al. Long-term characterization of MRI-morphologic alterations after active motion-compensated liver SBRT: A multi-institutional pooled analysis[J]. Acta Oncol, 2023, 62(3): 281-289. doi:10.1080/0284186x.2023.2187707
doi: 10.1080/0284186x.2023.2187707 |
37 |
RIM C H, KIM H J, SEONG J. Clinical feasibility and efficacy of stereotactic body radiotherapy for hepatocellular carcinoma: A systematic review and meta-analysis of observational studies[J]. Radiother Oncol, 2019, 131: 135-144. doi:10.1016/j.radonc.2018.12.005
doi: 10.1016/j.radonc.2018.12.005 |
38 |
HSIEH C E, VENKATESULU B P, LEE C H, et al. Predictors of Radiation-Induced Liver Disease in Eastern and Western Patients With Hepatocellular Carcinoma Undergoing Proton Beam Therapy[J]. Int J Radiat Oncol Biol Phys, 2019, 105(1): 73-86. doi:10.1016/j.ijrobp.2019.02.032
doi: 10.1016/j.ijrobp.2019.02.032 |
39 |
BAE S H, PARK H C, YOON W S, et al. Treatment Outcome after Fractionated Conformal Radiotherapy for Hepatocellular Carcinoma in Patients with Child-Pugh Classification B in Korea (KROG 16-05)[J]. Cancer Res Treat, 2019, 51(4): 1589-1599. doi:10.4143/crt.2018.687
doi: 10.4143/crt.2018.687 |
40 |
ANDRATSCHKE N, ALHEID H, ALLGÄUER M, et al. The SBRT database initiative of the German Society for Radiation Oncology (DEGRO): patterns of care and outcome analysis of stereotactic body radiotherapy (SBRT) for liver oligometastases in 474 patients with 623 metastases[J]. BMC Cancer, 2018, 18(1): 283. doi:10.1186/s12885-018-4191-2
doi: 10.1186/s12885-018-4191-2 |
41 |
CAO Y, WANG H, JOHNSON T D, et al. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging[J]. Int J Radiat Oncol Biol Phys, 2013, 85(1): 258. doi:10.1016/j.ijrobp.2012.02.037
doi: 10.1016/j.ijrobp.2012.02.037 |
42 |
LIANG P C, CH′ANG H J, HSU C, et al. Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging predict outcomes of hepatocellular carcinoma receiving radiotherapy with or without thalidomide[J]. Hepatol Int, 2015, 9(2): 258-268. doi:10.1007/s12072-014-9557-1
doi: 10.1007/s12072-014-9557-1 |
43 |
WANG H, FARJAM R, FENG M, et al. Arterial perfusion imaging-defined subvolume of intrahepatic cancer[J]. Int J Radiat Oncol Biol Phys, 2014, 89(1): 167-174. doi:10.1016/j.ijrobp.2014.01.040
doi: 10.1016/j.ijrobp.2014.01.040 |
44 |
LIANG P C, CH′ANG H J, HSU C, et al. Dynamic MRI signals in the second week of radiotherapy relate to treatment outcomes of hepatocellular carcinoma: A preliminary result[J]. Liver Int, 2007, 27(4): 516-528. doi:10.1111/j.1478-3231.2007.01456.x
doi: 10.1111/j.1478-3231.2007.01456.x |
45 |
TAKAMATSU S, YAMAMOTO K, MAEDA Y, et al. Evaluation of Focal Liver Reaction after Proton Beam Therapy for Hepatocellular Carcinoma Examined Using Gd-EOB-DTPA Enhanced Hepatic Magnetic Resonance Imaging[J]. PLoS One, 2016, 11(12): e0167155. doi:10.1371/journal.pone.0167155
doi: 10.1371/journal.pone.0167155 |
46 |
NEHLSEN A D, SINDHU K K, WOLKEN T, et al. Characterization and Prediction of Signal Intensity Changes in Normal Liver Parenchyma on Gadoxetic Acid-enhanced MRI Scans after Liver-directed Radiation Therapy[J]. Radiol Imaging Cancer, 2022, 4(4): e210100. doi:10.1148/rycan.210100
doi: 10.1148/rycan.210100 |
47 |
FAST M, VAN DE SCHOOT A, VAN DE LINDT T, et al. Tumor Trailing for Liver SBRT on the MR-Linac[J]. Int J Radiat Oncol Biol Phys, 2019, 103(2): 468-478. doi:10.1016/j.ijrobp.2018.09.011
doi: 10.1016/j.ijrobp.2018.09.011 |
48 |
YUAN Y, ANDRONESI O C, BORTFELD T R, et al. Feasibility study of in vivo MRI based dosimetric verification of proton end-of-range for liver cancer patients[J]. Radiother Oncol, 2013, 106(3): 378-382. doi:10.1016/j.radonc.2013.01.016
doi: 10.1016/j.radonc.2013.01.016 |
49 |
JUNG J, KIM H, YOON S M, et al. Targeting Accuracy of Image-Guided Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma in Real-Life Clinical Practice: In Vivo Assessment Using Hepatic Parenchymal Changes on Gd-EOB-DTPA-Enhanced Magnetic Resonance Images[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 867-874. doi:10.1016/j.ijrobp.2018.05.018
doi: 10.1016/j.ijrobp.2018.05.018 |
50 |
BODA-HEGGEMANN J, JAHNKE A, CHAN M K H, et al. In-vivo treatment accuracy analysis of active motion-compensated liver SBRT through registration of plan dose to post-therapeutic MRI-morphologic alterations[J]. Radiother Oncol, 2019, 134: 158-165. doi:10.1016/j.radonc.2019.01.023
doi: 10.1016/j.radonc.2019.01.023 |
51 |
BROCK K K, MUTIC S, MCNUTT T R, et al. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132[J]. Med Phys, 2017, 44(7): e43-e76. doi:10.1002/mp.12256
doi: 10.1002/mp.12256 |
52 |
LUU M H, MAI H S, PHAM X L, et al. Quantification of liver-Lung shunt fraction on 3D SPECT/CT images for selective internal radiation therapy of liver cancer using CNN-based segmentations and non-rigid registration[J]. Comput Methods Programs Biomed, 2023, 233: 107453. doi:10.1016/j.cmpb.2023.107453
doi: 10.1016/j.cmpb.2023.107453 |
53 |
LEVANDOWSKY M, WINTER D. Distance Between Sets[J]. Nature, 1971, 234(5323): 34. doi:10.1038/234034a0
doi: 10.1038/234034a0 |
54 |
CHALANA V, KIM Y M. A methodology for evaluation of boundary detection algorithms on medical images[J]. IEEE Trans Med Imaging, 1997, 16(5): 642-652. doi:10.1109/42.640755
doi: 10.1109/42.640755 |
55 |
MENG L, TIAN Y, BU S. Liver tumor segmentation based on 3D convolutional neural network with dual scale[J]. J Appl Clin Med Phys, 2020, 21(1): 144-157. doi:10.1002/acm2.12784
doi: 10.1002/acm2.12784 |
56 |
PIERRARD J, DEHENEFFE S, DECHAMBRE D, et al. Markerless liver online adaptive stereotactic radiotherapy: feasibility analysisCervantes[J]. Phys Med Biol, 2024, 69(9). doi: 10.1088/1361-6560/ad39a1 .
doi: 10.1088/1361-6560/ad39a1 |
[1] | 唐艳萍,李科志,蔡政民,陶昊,唐嘉营,李学宇,李炎娟,曹骥. 脂肪酸结合蛋白5结合Vimentin蛋白在肝癌中的作用机制[J]. 实用医学杂志, 2024, 40(6): 756-761. |
[2] | 徐军红,姚红兵,王雪尧,郭威,陆才进,吴嘉兴,蒋建晖,赵东康. FOLFOX-肝动脉灌注化疗联合应用仑伐替尼和程序性死亡受体1抑制剂治疗中晚期肝癌[J]. 实用医学杂志, 2024, 40(6): 762-767. |
[3] | 刘燕,张冬华,黄渝茜,刘有顺,黄骥. 扁蒴藤素调节ROS/ASK1/JNK信号通路对二乙基亚硝胺诱导大鼠肝癌的抑制作用[J]. 实用医学杂志, 2023, 39(20): 2597-2602. |
[4] | 张心怡,张国梁,张广林. 血清HBsAg和HBeAg定量检测评估恩替卡韦治疗乙型肝炎肝硬化合并原发性肝癌患者病毒应答的临床价值[J]. 实用医学杂志, 2023, 39(17): 2241-2247. |
[5] | 李飞燕 张日云 王娜 王明刚 毛德文 . 磷脂酶A2在肝细胞癌发生发展过程中的作用 [J]. 实用医学杂志, 2023, 39(15): 1857-1861. |
[6] | 刘文瑛 阙园, 欧阳再兴 朱剑华 吴黎明 谭勇 宋灏 朱玉珍 黄从云 . 末梢门静脉栓塞联合多模态影像技术在巨大肝癌外科治疗中的应用 [J]. 实用医学杂志, 2023, 39(12): 1546-1550. |
[7] | 文静 赫嵘 张宏伟 熊企秋 贾哲 张珂 . 同期联合手术治疗门静脉高压症合并原发性肝癌安全性与疗效评价 [J]. 实用医学杂志, 2023, 39(11): 1416-1421. |
[8] | 吴田方 戴东 王常元. circ⁃0008583结合EIF4A3蛋白促进肝癌细胞增殖并抑制其凋亡 [J]. 实用医学杂志, 2022, 38(9): 1088-1093. |
[9] | 杨凯仑 李智 任起梦 刘钊 毛鑫宇 朱晓黎 倪才方. 肝动脉化疗栓塞术不同化疗方案治疗原发性肝癌的疗效及安全性 [J]. 实用医学杂志, 2022, 38(5): 594-599. |
[10] | 雷林翰 郑迪杰 吴纯宸 郑戬 谢华华 华豪 孙诚谊 喻超. LincRNA00858靶向miR⁃3126⁃5p影响肝癌细胞的增殖、迁移和侵袭 [J]. 实用医学杂志, 2022, 38(4): 427-433. |
[11] | 韦雪艳 林秋伶 邱模勤 陈佩琴 周子寒 刘颖春 梁伟康 张若昕 余红平 . 超级增强子区域遗传变异与乙型肝炎病毒相关肝细胞癌术后总生存期的关联分析 [J]. 实用医学杂志, 2022, 38(24): 3059-3064. |
[12] | 张晓坤 司徒瑞儒. 甲胎蛋白、甲胎蛋白异质体3比率、高尔基体蛋白73联合检测在原发性肝癌诊断中的价值 [J]. 实用医学杂志, 2021, 37(8): 1068-1071. |
[13] | 薄维波 秦继宝 陈隽 陶祥平 章勇 闫朝春 朱洪波 郭加友 安仲武. 血清异常凝血酶原在中晚期肝癌患者中的表达及预后 [J]. 实用医学杂志, 2021, 37(23): 3036-3040. |
[14] | 王韶双, 周艳楠, 阳婷婷, 严军, 董麦娟, 王强 . 全麻复合区域阻滞对肝癌开腹手术患者镇痛效应和术后康复的影响 [J]. 实用医学杂志, 2021, 37(15): 1939-1943. |
[15] | 李喜龙, 李长生 , 王茂爱, 杨春要, 张震, 缪长虹, 卢锡华. 右美托咪啶对腹腔镜肝癌射频消融术老年患者炎症反应及围术期神经认知紊乱的影响 [J]. 实用医学杂志, 2021, 37(15): 1999-2002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||