实用医学杂志 ›› 2024, Vol. 40 ›› Issue (5): 714-720.doi: 10.3969/j.issn.1006-5725.2024.05.021
收稿日期:
2023-11-29
出版日期:
2024-03-10
发布日期:
2024-03-26
通讯作者:
肖林
E-mail:liuyangxiaolin@aliyun.com
基金资助:
Received:
2023-11-29
Online:
2024-03-10
Published:
2024-03-26
Contact:
Lin. XIAO
E-mail:liuyangxiaolin@aliyun.com
摘要:
少突胶质细胞(OL)是发育中的中枢神经系统(central nervous system,CNS)髓鞘形成和髓鞘损伤再生的关键;ATP不仅是一种能量载体,也作为一个重要的信号分子参与细胞之间的交流,其嘌呤能受体亚型广泛存在于神经元和神经胶质细胞中,主要包括接受腺苷信号的P1受体和接受ATP/ADP/UTP信号的P2受体。不同亚型的嘌呤能受体在CNS中不同部位的表达及其在生理病理状态下发挥的具体作用和机制也各有不同,本文对近年来关于嘌呤能受体在OL发育及髓鞘形成与修复中作用和机制研究的新进展进行综述,该方面的研究对于了解嘌呤能信号在诸多脱髓鞘性疾病以及髓鞘发育障碍性疾病中的作用、发掘相应的潜在治疗靶点具有重要的意义。
中图分类号:
何月华,谢华,肖林. 嘌呤能信号在少突胶质细胞发育和髓鞘修复中的作用及机制研究进展[J]. 实用医学杂志, 2024, 40(5): 714-720.
Yuehua HE,Hua XIE,Lin. XIAO. The role and mechanism of purinergic signaling in oligodendrocytes development and myelin repair: A literature review[J]. The Journal of Practical Medicine, 2024, 40(5): 714-720.
1 |
NAVE K A, WERNER H B. Ensheathment and Myelination of Axons: Evolution of Glial Functions[J]. Annu Rev Neurosci, 2021, 44: 197-219. doi:10.1146/annurev-neuro-100120-122621
doi: 10.1146/annurev-neuro-100120-122621 |
2 |
KUHN S, GRITTI L, CROOKS D, et al. Oligodendrocytes in Development, Myelin Generation and Beyond[J]. Cells, 2019, 8(11): 1424. doi:10.3390/cells8111424
doi: 10.3390/cells8111424 |
3 |
LUBETZKI C, ZALC B, WILLIAMS A, et al. Remyelination in multiple sclerosis: from basic science to clinical translation[J]. Lancet Neurol, 2020, 19(8): 678-688. doi:10.1016/s1474-4422(20)30140-x
doi: 10.1016/s1474-4422(20)30140-x |
4 |
WALTON C, KING R, RECHTMAN L, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition[J]. Mult Scler J, 2020, 26(14): 1816-1821. doi:10.1177/1352458520970841
doi: 10.1177/1352458520970841 |
5 |
BURNSTOCK G. Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future[J]. Bioessays, 2012, 34(3): 218-225. doi:10.1002/bies.201100130
doi: 10.1002/bies.201100130 |
6 |
RIVERA A, VANZULLI I, BUTT A M, et al. A Central Role for ATP Signalling in Glial Interactions in the CNS[J]. Curr Drug Targets, 2016, 17(16): 1829-1833. doi:10.2174/1389450117666160711154529
doi: 10.2174/1389450117666160711154529 |
7 |
AGOSTINHO P, MADEIRA D, DIAS L, et al. Purinergic signaling orchestrating neuron-glia communication[J]. Pharmacol Res, 2020, 162: 105253. doi:10.1016/j.phrs.2020.105253
doi: 10.1016/j.phrs.2020.105253 |
8 |
GIULIANI A L, SARTI A C, DI V F, et al. Extracellular nucleotides and nucleosides as signalling molecules[J]. Immunol Lett, 2019, 205: 16-24. doi:10.1016/j.imlet.2018.11.006
doi: 10.1016/j.imlet.2018.11.006 |
9 |
MILLER R H. Oligodendrocyte origins[J]. Trends Neurosci, 1996, 19(3): 92-96. doi:10.1016/s0166-2236(96)80036-1
doi: 10.1016/s0166-2236(96)80036-1 |
10 |
CHU T C, SHIELDS L E, ZENG W X, et al. Dynamic glial response and crosstalk in demyelination-remyelination and neurodegeneration processes[J]. Neural Regen Res, 2021, 16(7): 1359-1368. doi:10.4103/1673-5374.300975
doi: 10.4103/1673-5374.300975 |
11 |
NAVE K A, WERNER H B. Myelination of the Nervous System: Mechanisms and Functions[J]. Annu Rev Cell Dev Biol, 2014, 30: 503-533. doi:10.1146/annurev-cellbio-100913-013101
doi: 10.1146/annurev-cellbio-100913-013101 |
12 |
GACEM N, NAIT-OUMESMAR B. Oligodendrocyte Development and Regenerative Therapeutics in Multiple Sclerosis[J]. Life Basel, 2021, 11(4): 327. doi:10.3390/life11040327
doi: 10.3390/life11040327 |
13 |
KUHLBRODT K, HERBARTH B, SOCK E, et al. Sox10, a novel transcriptional modulator in glial cells[J]. J Neurosci, 1998, 18(1): 237-250. doi:10.1523/jneurosci.18-01-00237.1998
doi: 10.1523/jneurosci.18-01-00237.1998 |
14 |
ZHOU Q, WANG S L, ANDERSON D J, et al. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors[J]. Neuron, 2000, 25(2): 331-343. doi:10.1016/s0896-6273(00)80898-3
doi: 10.1016/s0896-6273(00)80898-3 |
15 |
RIVERS L E, YOUNG K M, RIZZI M, et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice[J]. Nat Neurosci, 2008, 11(12): 1392-1401. doi:10.1038/nn.2220
doi: 10.1038/nn.2220 |
16 | PRINGLE N M H, COLLARINI E J, RICHARDSON W D, et al. PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage[J]. Development, 1992, 11(5): 535-551. |
17 |
BANSAL R W A, GARD A L, RANSCHT B, et al. PFEIFFER SE. Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development[J]. J Neurosci Res, 1989, 24(4): 548-557. doi:10.1002/jnr.490240413
doi: 10.1002/jnr.490240413 |
18 |
CAI J, ZHU Q, ZHENG K, et al. Co-Localization of Nkx6.2 and Nkx2.2 Homeodomain Proteins in Differentiated Myelinating Oligodendrocytes[J]. Glia, 2010, 58(4): 458-468. doi:10.1002/glia.20937
doi: 10.1002/glia.20937 |
19 |
XIAO L, OHAYON D, MCKENZIE I A, et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning[J]. Nat Neurosci, 2016, 19(9): 1210-1217. doi:10.1038/nn.4351
doi: 10.1038/nn.4351 |
20 |
ZHANG S, WANG Y, ZHU X Q, et al. The Wnt Effector TCF7l2 Promotes Oligodendroglial Differentiation by Repressing Autocrine BMP4-Mediated Signaling[J]. J Neurosci, 2021, 41(8): 1650-1664. doi:10.1523/jneurosci.2386-20.2021
doi: 10.1523/jneurosci.2386-20.2021 |
21 |
HUANG H, HE W J, TANG T, et al. Immunological Markers for Central Nervous System Glia[J]. Neurosci Bull, 2023, 39(3): 379-392. doi:10.1007/s12264-022-00938-2
doi: 10.1007/s12264-022-00938-2 |
22 |
JIANG W X, YANG W C, YANG W W, et al. Identification of Tmem10 as a Novel Late-stage Oligodendrocytes Marker for Detecting Hypomyelination[J]. Int J Biol Sci, 2014, 10(1): 33-42. doi:10.7150/ijbs.7526
doi: 10.7150/ijbs.7526 |
23 |
MADHAVARAO C N, MOFFETT J R, MOORE R A, et al. Immunohistochemical localization of asparoacylase in the rat central nervous system[J]. J Comp Neurol, 2004, 472(3): 318-329. doi:10.1002/cne.20080
doi: 10.1002/cne.20080 |
24 |
RAJENDRAN M, DANE E, CONLEY J, et al. Imaging Adenosine Triphosphate (ATP)[J]. Biol Bull, 2016, 231(1): 73-84. doi:10.1086/689592
doi: 10.1086/689592 |
25 | BURNSTOCK G. Purinergic Nerves.[J]. Pharmacol Rev, 1972, 24(3): 509-581. |
26 |
LAZAROWSKI E R. Vesicular and conductive mechanisms of nucleotide release[J]. Purinerg Signal, 2012, 8(3): 359-373. doi:10.1007/s11302-012-9304-9
doi: 10.1007/s11302-012-9304-9 |
27 |
LAZAROWSKI E R, BOUCHER R C. HARDEN T K,et al. Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations[J]. J Biol Chem, 2000, 275(40): 31061-31068. doi:10.1074/jbc.m003255200
doi: 10.1074/jbc.m003255200 |
28 |
BURNSTOCK G. Introduction to Purinergic Signalling in the Brain[J]. Adv Exp Med Biol, 2020, 1202: 1-12. doi:10.1007/978-3-030-30651-9_1
doi: 10.1007/978-3-030-30651-9_1 |
29 |
YEGUTKIN G G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade[J]. Biochim Biophys Acta, 2008, 1783(5): 673-694. doi:10.1016/j.bbamcr.2008.01.024
doi: 10.1016/j.bbamcr.2008.01.024 |
30 |
BURNSTOCK G. Short- and long-term (trophic) purinergic signalling[J]. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1700): 20150422. doi:10.1098/rstb.2015.0422
doi: 10.1098/rstb.2015.0422 |
31 |
FIELDS R D, STEVENS B. ATP: an extracellular signaling molecule between neurons and glia[J]. Trends Neurosci, 2000, 23(12): 625-633. doi:10.1016/s0166-2236(00)01674-x
doi: 10.1016/s0166-2236(00)01674-x |
32 |
ILLES P, XU G Y, TANG Y, et al. Purinergic Signaling in the Central Nervous System in Health and Disease[J]. Neurosci Bull, 2020, 36(11): 1239-1241. doi:10.1007/s12264-020-00602-7
doi: 10.1007/s12264-020-00602-7 |
33 |
PIETROWSKI M J, GABR A A, KOZLOV S, et al. Glial Purinergic Signaling in Neurodegeneration[J]. Front Neurol, 2021, 12: 654850. doi:10.3389/fneur.2021.654850
doi: 10.3389/fneur.2021.654850 |
34 | BURNSTOCK G. Purine nucleotides[J]. Adv Biochem Psychopharmacol, 1976, 15: 225-235. |
35 |
RODRIGUES R J, MARQUES J M, CUNHA R A, et al. Purinergic signalling and brain development[J]. Semin Cell Dev Biol, 2019, 95: 34-41. doi:10.1016/j.semcdb.2018.12.001
doi: 10.1016/j.semcdb.2018.12.001 |
36 | RALEVIC V, BURNSTOCK G. Receptors for purines and pyrimidines[J]. Pharmacol Rev, 1998, 50(3): 413-492. |
37 |
BURNSTOCK G. Purine and pyrimidine receptors[J]. Cell Mol Life Sci, 2007, 64(12): 1471-1483. doi:10.1007/s00018-007-6497-0
doi: 10.1007/s00018-007-6497-0 |
38 |
BURNSTOCK G. Physiology and pathophysiology of purinergic neurotransmission[J]. Physiol Rev, 2007, 87(2): 659-797. doi:10.1152/physrev.00043.2006
doi: 10.1152/physrev.00043.2006 |
39 |
FIELDS R D, BURNSTOCK G. Purinergic signalling in neuron-glia interactions[J]. Nat Rev Neurosci, 2006, 7(6): 423-436. doi:10.1038/nrn1928
doi: 10.1038/nrn1928 |
40 |
AGRESTI C, MEOMARTINI M E, AMADIO S, et al. Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development[J]. Glia, 2005, 50(2): 132-144. doi:10.1002/glia.20160
doi: 10.1002/glia.20160 |
41 |
AGRESTI C, MEOMARTINI M E, AMADIO S, et al. ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors[J]. Brain Res Brain Res Rev, 2005, 48(2): 157-165. doi:10.1016/j.brainresrev.2004.12.005
doi: 10.1016/j.brainresrev.2004.12.005 |
42 |
VERKHRATSKY A, KRISHTAL O A, BURNSTOCK G, et al. Purinoceptors on Neuroglia[J]. Mol Neurobiol, 2009, 39(3): 190-208. doi:10.1007/s12035-009-8063-2
doi: 10.1007/s12035-009-8063-2 |
43 |
ZHANG Y, CHEN K N, SLOAN S A, et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex[J]. J Neurosci, 2014, 34(36): 11929-11947. doi:10.1523/jneurosci.1860-14.2014
doi: 10.1523/jneurosci.1860-14.2014 |
44 |
MATUTE C, TORRE I, PEREZ-CERDA F, et al. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis[J]. J Neurosci, 2007, 27(35): 9525-9533. doi:10.1523/jneurosci.0579-07.2007
doi: 10.1523/jneurosci.0579-07.2007 |
45 |
AMADIO S, TRAMINI G, MARTORANA A, et al. Oligodendrocytes express P2Y12 metabotropic receptor in adult rat brain[J]. Neuroscience, 2006, 141(3): 1171-1180. doi:10.1016/j.neuroscience.2006.05.058
doi: 10.1016/j.neuroscience.2006.05.058 |
46 |
MORAN J M J, MATUTE C. Immunohistochemical localization of the P2Y(1) purinergic receptor in neurons and glial cells of the central nervous system[J]. Brain Res Mol Brain Res, 2000, 78(1-2): 50-58. doi:10.1016/s0169-328x(00)00067-x
doi: 10.1016/s0169-328x(00)00067-x |
47 |
FLORENZANO F V M, CAVALIERE F, VOLONTÉ C, et al. Cerebellar lesion up-regulates P2X1 and P2X2 purinergic receptors in precerebellar nuclei.[J]. Neuroscience, 2002, 115(2): 425-434. doi:10.1016/s0306-4522(02)00397-4
doi: 10.1016/s0306-4522(02)00397-4 |
48 |
DANE C, STOKES L, JORGENSEN W T, et al. P2X receptor antagonists and their potential as therapeutics: a patent review (2010-2021)[J]. Expert Opin Ther Pat, 2022, 32(7): 769-790. doi:10.1080/13543776.2022.2069010
doi: 10.1080/13543776.2022.2069010 |
49 |
BUTT A M. Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology[J]. Glia, 2006, 54(7): 666-675. doi:10.1002/glia.20424
doi: 10.1002/glia.20424 |
50 |
XU M L, BI C W, CHENG L K, et al. Reduced Expression of P2Y2 Receptor and Acetylcholinesterase at Neuromuscular Junction of P2Y1 Receptor Knock-out Mice[J]. J Mol Neurosci, 2015, 57(3): 446-451. doi:10.1007/s12031-015-0591-9
doi: 10.1007/s12031-015-0591-9 |
51 |
OTHMAN T, YAN H L, RRVKEES SA, et al. Oligodendrocytes express functional A1 adenosine receptors that stimulate cellular migration[J]. Glia, 2003, 44(2): 166-172. doi:10.1002/glia.10281
doi: 10.1002/glia.10281 |
52 |
ABBRACCHIO M P, BRAMBILLA R, CERUTI S, et al. Signalling mechanisms involved in P2Y receptor-mediated reactive astrogliosis[J]. Prog Brain Res, 1999, 120: 333-342. doi:10.1016/s0079-6123(08)63567-0
doi: 10.1016/s0079-6123(08)63567-0 |
53 |
STEVENS B, PORTA S, HAAK L L, et al. Adenosine: A neuron-glial transmitter promoting myelination in the CNS in response to action potentials[J]. Neuron, 2002, 36(5): 855-868. doi:10.1016/s0896-6273(02)01067-x
doi: 10.1016/s0896-6273(02)01067-x |
54 |
FIELDS R D. Nerve impulses regulate myelination through purinergic signalling[J]. Novartis Found Symp, 2006, 276: 148-281. doi:10.1002/9780470032244.ch12
doi: 10.1002/9780470032244.ch12 |
55 |
ISHIBASHI T, DAKIN K A, STEVENS B, et al. Astrocytes promote myelination in response to electrical impulses[J]. Neuron, 2006, 49(6): 823-832. doi:10.1016/j.neuron.2006.02.006
doi: 10.1016/j.neuron.2006.02.006 |
56 |
SHEN H Y, HUANG N X, REEMMER J, et al. Adenosine Actions on Oligodendroglia and Myelination in Autism Spectrum Disorder[J]. Front Cell Neurosci, 2018, 12: 482. doi:10.3389/fncel.2018.00482
doi: 10.3389/fncel.2018.00482 |
57 | SELI M, TURNER C P, MENT L, et al. A1 adenosine receptors mediate hypoxia-induced ventriculomegaly[J]. Proc Natl Acad Sci U S A, 2003, 100(20): 11718-11722. |
58 |
TSUTSUI S, SCHNERMANN J, NOORBAKHSH F, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis[J]. J Neurosci, 2004, 24(6): 1521-1529. doi:10.1523/jneurosci.4271-03.2004
doi: 10.1523/jneurosci.4271-03.2004 |
59 |
YAO S Q, LI Z Z, HUANG Q Y, et al. Genetic inactivation of the adenosine A2A receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis[J]. J Neurochem, 2012, 123(1): 100-112. doi:10.1111/j.1471-4159.2012.07807.x
doi: 10.1111/j.1471-4159.2012.07807.x |
60 |
INGWERSEN J, WINGERATH B, GRAF J, et al. Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation[J]. J Neuroinflammation, 2016, 13: 48. doi:10.1186/s12974-016-0512-z
doi: 10.1186/s12974-016-0512-z |
61 |
GONZÁLEZ F E, SÁNCHEZ G M V, PÉREZ S A, et al. A3Adenosine receptors mediate oligodendrocyte death and ischemic damage to optic nerve[J]. Glia, 2014, 62(2): 199-216. doi:10.1002/glia.22599
doi: 10.1002/glia.22599 |
62 |
VAZQUEZ V N, DOMERCQ M, MARTIN A, et al. P2X4 Receptors Control the Fate and Survival of Activated Microglia[J]. Glia, 2014, 62(2): 171-184. doi:10.1002/glia.22596
doi: 10.1002/glia.22596 |
63 |
DOMERCQ M, ZABALA A, MATUTE C, et al. Purinergic receptors in multiple sclerosis pathogenesis[J]. Brain Res Bull, 2019, 151: 38-45. doi:10.1016/j.brainresbull.2018.11.018
doi: 10.1016/j.brainresbull.2018.11.018 |
64 |
JAMES G, BUTT A M. P2X and P2Y purinoreceptors mediate ATP-evoked calcium signalling in optic nerve glia in situ[J]. Cell Calcium, 2001, 30(4): 251-259. doi:10.1054/ceca.2001.0232
doi: 10.1054/ceca.2001.0232 |
65 |
SKAPER S D, DEBETTO P, GIUSTI P, et al. The P2X7purinergic receptor: from physiology to neurological disorders[J]. FASEB J, 2009, 24(2): 337-345. doi:10.1096/fj.09-138883
doi: 10.1096/fj.09-138883 |
66 |
OYANGUREN D O, RODRIGUEZ A A, VILLOSLADA P, et al. Gain-of-function of P2X7 receptor gene variants in multiple sclerosis[J]. Cell Calcium, 2011, 50(5): 468-472. doi:10.1016/j.ceca.2011.08.002
doi: 10.1016/j.ceca.2011.08.002 |
67 |
CALZAFERRI F, RUIZ R C, DE D A M G, et al. The purinergic P2X7 receptor as a potential drug target to combat neuroinflammation in neurodegenerative diseases[J]. Med Res Rev, 2020, 40(6): 2427-2465. doi:10.1002/med.21710
doi: 10.1002/med.21710 |
68 |
FENG J F, GAO X F, PU Y Y, et al. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration[J]. Purinerg Signal, 2015, 11(3): 361-369. doi:10.1007/s11302-015-9458-3
doi: 10.1007/s11302-015-9458-3 |
69 |
AMADIO S, MONTILLI C, MAGLIOZZI R, et al. P2Y12 Receptor Protein in Cortical Gray Matter Lesions in Multiple Sclerosis[J]. Cereb Cortex, 2009, 20(6): 1263-1273. doi:10.1093/cercor/bhp193
doi: 10.1093/cercor/bhp193 |
70 |
MOYON S, DUBESSY A L, AIGROT M S, et al. Demyelination Causes Adult CNS Progenitors to Revert to an Immature State and Express Immune Cues That Support Their Migration[J]. J Neurosci, 2015, 35(1): 4-20. doi:10.1523/jneurosci.0849-14.2015
doi: 10.1523/jneurosci.0849-14.2015 |
71 |
CHEN Y, WU H, WANG S Z, et al. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination[J]. Nat Neurosci, 2009, 12(11): 1398-1406. doi:10.1038/nn.2410
doi: 10.1038/nn.2410 |
72 |
COPPOLINO G T, MARANGON D, NEGRI C, et al. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination[J]. Glia, 2018, 66(5): 1118-1130. doi:10.1002/glia.23305
doi: 10.1002/glia.23305 |
73 |
BODA E, VIGANO F, ROSA P, et al. The GPR17 Receptor in NG2 Expressing Cells: Focus on In Vivo Cell Maturation and Participation in Acute Trauma and Chronic Damage[J]. Glia, 2011, 59(12): 1958-1973. doi:10.1002/glia.21237
doi: 10.1002/glia.21237 |
74 |
BONFANTI E, BONIFACINO T, RAFFAELE S, et al. Abnormal Upregulation of GPR17 Receptor Contributes to Oligodendrocyte Dysfunction in SOD1 G93A Mice[J]. Int J Mol Sci, 2020, 21(7): 2395. doi:10.3390/ijms21072395
doi: 10.3390/ijms21072395 |
75 |
CERUTI S, VIGANO F, BODA E, et al. Expression of the New P2Y-Like Receptor GPR17 During Oligodendrocyte Precursor Cell Maturation Regulates Sensitivity to ATP-Induced Death[J]. Glia, 2011, 59(3): 363-378. doi:10.1002/glia.21107
doi: 10.1002/glia.21107 |
[1] | 赵红 李潇 王翠 . 关注少突胶质细胞:阿尔茨海默病治疗的新靶点[J]. 实用医学杂志, 2023, 39(13): 1595-1599. |
[2] | 祝晓娟 龙永珍 陈晓玲 张莹 彭青 周树勤, . 亚抑制浓度庆大霉素通过抑制ATP 的产生降低大肠杆菌丛动能力的机制 [J]. 实用医学杂志, 2022, 38(3): 306-310. |
[3] | 杨卓滢, 赵源征, 何远宏, 孙若楠, 苑和平.
KATP 通道开放剂对脑梗死后突触可塑性的影响
[J]. 实用医学杂志, 2020, 36(24): 3328-3332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||