1 |
MUKUND K, SUBRAMANIAM S. Skeletal muscle: A review of molecular structure and function, in health and disease[J]. Wiley Interdiscip Rev Syst Biol Med, 2020, 12(1): e1462. doi:10.1002/wsbm.1462
doi: 10.1002/wsbm.1462
|
2 |
潘昕瑶, 李婷, 吴耀彬, 等. 生物3D打印在大面积骨骼肌损伤中应用研究进展[J]. 实用医学杂志, 2022, 38(20): 2510-2517.
|
3 |
MOISEEVA V, CISNEROS A, SICA V, et al. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration[J]. Nature, 2023, 613(7942): 169-178. doi:10.1038/s41586-022-05535-x
doi: 10.1038/s41586-022-05535-x
|
4 |
MURACH K A, FRY C S, DUPONT-VERSTEEGDEN E E, et al. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation[J]. FASEB J, 2021, 35(10): e21893. doi:10.1096/fj.202101096r
doi: 10.1096/fj.202101096r
|
5 |
陈正永, 杨婧, 曾晓玲. 转化生长因子-β在间充质干细胞分化中的作用研究进展[J]. 医学综述, 2022, 28(10): 1896-1900. doi:10.3969/j.issn.1006-2084.2022.10.005
doi: 10.3969/j.issn.1006-2084.2022.10.005
|
6 |
HENROT P, BLERVAQUE L, DUPIN I, et al. Cellular interplay in skeletal muscle regeneration and wasting: insights from animal models[J]. J Cachexia Sarcopenia Muscle, 2023, 14(2): 745-757. doi:10.1002/jcsm.13103
doi: 10.1002/jcsm.13103
|
7 |
MENARIM B C, MACLEOD J N, DAHLGREN L A. Bone marrow mononuclear cells for joint therapy: The role of macrophages in inflammation resolution and tissue repair[J]. World J Stem Cells, 2021, 13(7): 825-840. doi:10.4252/wjsc.v13.i7.825
doi: 10.4252/wjsc.v13.i7.825
|
8 |
LATROCHE C, WEISS-GAYET M, CHAZAUD B. Investigating the Vascular Niche: Three-Dimensional Co-culture of Human Skeletal Muscle Stem Cells and Endothelial Cells[J]. Methods Mol Biol, 2019, 2002: 121-128. doi:10.1007/7651_2018_182
doi: 10.1007/7651_2018_182
|
9 |
LEE J H, MASSAGUE J. TGF-beta in developmental and fibrogenic EMTs[J]. Semin Cancer Biol, 2022, 86(Pt 2): 136-145. doi:10.1016/j.semcancer.2022.09.004
doi: 10.1016/j.semcancer.2022.09.004
|
10 |
PENG D, FU M, WANG M, et al. Targeting TGF-beta signal transduction for fibrosis and cancer therapy[J]. Mol Cancer, 2022, 21(1): 104. doi:10.1186/s12943-022-01569-x
doi: 10.1186/s12943-022-01569-x
|
11 |
LODYGA M, HINZ B. TGF-beta1 - A truly transforming growth factor in fibrosis and immunity[J]. Semin Cell Dev Biol, 2020, 101: 123-139. doi:10.1016/j.semcdb.2019.12.010
doi: 10.1016/j.semcdb.2019.12.010
|
12 |
BANSAL S P, PEREIRA T, DESAI R S, et al. Expression of transforming growth factor-beta in oral submucous fibrosis: A systematic review[J]. J Oral Maxillofac Pathol, 2023, 27(2): 348-358.
|
13 |
HANSON I, PITMAN K E, EDIN N F J. The Role of TGF-beta3 in Radiation Response[J]. Int J Mol Sci, 2023, 24(8):7614. doi:10.3390/ijms24087614
doi: 10.3390/ijms24087614
|
14 |
WANG J, LAI X, YAO S, et al. Nestin promotes pulmonary fibrosis via facilitating recycling of TGF-beta receptor I[J]. Eur Respir J, 2022, 59(5):2003721. doi:10.1183/13993003.03721-2020
doi: 10.1183/13993003.03721-2020
|
15 |
BOYE A. A cytokine in turmoil: Transforming growth factor beta in cancer[J]. Biomed Pharmacother, 2021, 139: 111657. doi:10.1016/j.biopha.2021.111657
doi: 10.1016/j.biopha.2021.111657
|
16 |
DIAZ A, TAN K, HE H, et al. Keloid lesions show increased IL-4/IL-13 signaling and respond to Th2-targeting dupilumab therapy[J]. J Eur Acad Dermatol Venereol, 2020, 34(4): e161-e164. doi:10.1111/jdv.16097
doi: 10.1111/jdv.16097
|
17 |
ONG C H, THAM C L, HARITH H H, et al. TGF-beta-induced fibrosis: A review on the underlying mechanism and potential therapeutic strategies[J]. Eur J Pharmacol, 2021, 911: 174510. doi:10.1016/j.ejphar.2021.174510
doi: 10.1016/j.ejphar.2021.174510
|
18 |
陈珊, 朱俊德, 赵雪, 等. 神经干细胞来源外泌体对脑缺血再灌注损伤大鼠星形胶质细胞TGF-β1信号转导与炎症因子的影响[J]. 实用医学杂志, 2023, 39(13): 1600-1605+1613. doi:10.3969/j.issn.1006-5725.2023.13.002
doi: 10.3969/j.issn.1006-5725.2023.13.002
|
19 |
LIAO Z, LAN H, JIAN X, et al. Myofiber directs macrophages IL-10-Vav1-Rac1 efferocytosis pathway in inflamed muscle following CTX myoinjury by activating the intrinsic TGF-beta signaling[J]. Cell Commun Signal, 2023, 21(1): 168. doi:10.1186/s12964-023-01163-8
doi: 10.1186/s12964-023-01163-8
|
20 |
AHMAD S S, CHUN H J, AHMAD K, et al. The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production[J]. J Anim Sci Technol, 2023, 65(1): 16-31. doi:10.5187/jast.2022.e114
doi: 10.5187/jast.2022.e114
|
21 |
SHI L L, ZHU K C, WANG H L. Characterization of myogenic regulatory factors, myod and myf5 from Megalobrama amblycephala and the effect of lipopolysaccharide on satellite cells in skeletal muscle[J]. Gene, 2022, 834: 146608. doi:10.1016/j.gene.2022.146608
doi: 10.1016/j.gene.2022.146608
|
22 |
MUSCELLA A, VETRUGNO C, COSSA L G, et al. TGF-beta1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities[J]. J Neurochem, 2020, 153(4): 525-538. doi:10.1111/jnc.14913
doi: 10.1111/jnc.14913
|
23 |
FOROUHAN M, LIM W F, ZANETTI-DOMINGUES L C, et al. AR cooperates with SMAD4 to maintain skeletal muscle homeostasis[J]. Acta Neuropathol, 2022, 143(6): 713-731. doi:10.1007/s00401-022-02428-1
doi: 10.1007/s00401-022-02428-1
|
24 |
LAROUCHE J A, FRACZEK P M, KURPIERS S J, et al. Neutrophil and natural killer cell imbalances prevent muscle stem cell-mediated regeneration following murine volumetric muscle loss[J]. Proc Natl Acad Sci U S A, 2022, 119(15): e2111445119. doi:10.1073/pnas.2111445119
doi: 10.1073/pnas.2111445119
|
25 |
HENDERSON N C, RIEDER F, WYNN T A. Fibrosis: from mechanisms to medicines[J]. Nature, 2020, 587(7835): 555-566. doi:10.1038/s41586-020-2938-9
doi: 10.1038/s41586-020-2938-9
|
26 |
REN L L, LI X J, DUAN T T, et al. Transforming growth factor-beta signaling: From tissue fibrosis to therapeutic opportunities[J]. Chem Biol Interact, 2023, 369: 110289. doi:10.1016/j.cbi.2022.110289
doi: 10.1016/j.cbi.2022.110289
|
27 |
李素廷, 洪莉, 洪莎莎. 骨骼肌损伤模型及其损伤后修复调控相关因素的研究进展[J]. 武汉大学学报(医学版), 2022, 43(3): 507-510.
|
28 |
SADER F, ROY S. Tgf-beta superfamily and limb regeneration: Tgf-beta to start and Bmp to end[J]. Dev Dyn, 2022, 251(6): 973-987. doi:10.1002/dvdy.379
doi: 10.1002/dvdy.379
|
29 |
BEAVEN E, KUMAR R, BHATT H N, et al. Myofibroblast specific targeting approaches to improve fibrosis treatment[J]. Chem Commun (Camb), 2022, 58(98): 13556-13571. doi:10.1039/d2cc04825f
doi: 10.1039/d2cc04825f
|
30 |
MOLINA T, FABRE P, DUMONT N A. Fibro-adipogenic progenitors in skeletal muscle homeostasis, regeneration and diseases[J]. Open Biol, 2021, 11(12): 210110. doi:10.1098/rsob.210110
doi: 10.1098/rsob.210110
|
31 |
GIULIANI G, ROSINA M, REGGIO A. Signaling pathways regulating the fate of fibro/adipogenic progenitors (FAPs) in skeletal muscle regeneration and disease[J]. FEBS J, 2022, 289(21): 6484-6517. doi:10.1111/febs.16080
doi: 10.1111/febs.16080
|
32 |
ANTAR S A, ASHOUR N A, MARAWAN M E, et al. Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation[J]. Int J Mol Sci, 2023, 24(4):4404. doi:10.3390/ijms24044004
doi: 10.3390/ijms24044004
|
33 |
WOSIAK A, WODZINSKI D, MICHALSKA K, et al. Assessment of the Role of Selected SMAD3 and SMAD4 Genes Polymorphisms in the Development of Colorectal Cancer: Preliminary Research[J]. Pharmgenomics Pers Med, 2021, 14: 167-178. doi:10.2147/pgpm.s281958
doi: 10.2147/pgpm.s281958
|
34 |
TURGEMAN T, HAGAI Y, HUEBNER K, et al. Prevention of muscle fibrosis and improvement in muscle performance in the mdx mouse by halofuginone[J]. Neuromuscul Disord, 2008, 18(11): 857-868. doi:10.1016/j.nmd.2008.06.386
doi: 10.1016/j.nmd.2008.06.386
|
35 |
FAN Y, CHEN H, HUANG Z, et al. Emerging role of miRNAs in renal fibrosis[J]. RNA Biol, 2020, 17(1): 1-12. doi:10.1080/15476286.2019.1667215
doi: 10.1080/15476286.2019.1667215
|
36 |
CHEN S, WU Q, WANG Y, et al. miR-491-5p inhibits Emilin 1 to promote fibroblasts proliferation and fibrosis in gluteal muscle contracture via TGF-Beta1/Smad2 pathway[J]. Physiol Res, 2022, 71(2): 285-295. doi:10.33549/physiolres.934804
doi: 10.33549/physiolres.934804
|
37 |
李凌菡, 郝朋, 李轩. MicroRNA-29a-3p调控转化生长因子β1诱导的人角膜基质细胞的肌成纤维细胞转化[J]. 实用医学杂志, 2020, 36(1): 44-48. doi:10.3969/j.issn.1006-5725.2020.01.009
doi: 10.3969/j.issn.1006-5725.2020.01.009
|
38 |
MOREAU J M, VELEGRAKI M, BOLYARD C, et al. Transforming growth factor-beta1 in regulatory T cell biology[J]. Sci Immunol, 2022, 7(69): eabi4613. doi:10.1126/sciimmunol.abi4613
doi: 10.1126/sciimmunol.abi4613
|
39 |
ZHAO S, LI W, YU W, et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys[J]. Theranostics, 2021, 11(18): 8660-8673. doi:10.7150/thno.62820
doi: 10.7150/thno.62820
|
40 |
ARDITE E, PERDIGUERO E, VIDAL B, et al. PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy[J]. J Cell Biol, 2012, 196(1): 163-175. doi:10.1083/jcb.201105013
doi: 10.1083/jcb.201105013
|
41 |
NELSON C A, HUNTER R B, QUIGLEY L A, et al. Inhibiting TGF-beta activity improves respiratory function in mdx mice[J]. Am J Pathol, 2011, 178(6): 2611-2621. doi:10.1016/j.ajpath.2011.02.024
doi: 10.1016/j.ajpath.2011.02.024
|
42 |
ESPOSITO P, PICCIOTTO D, BATTAGLIA Y, et al. Myostatin: Basic biology to clinical application[J]. Adv Clin Chem, 2022, 106: 181-234. doi:10.1016/bs.acc.2021.09.006
doi: 10.1016/bs.acc.2021.09.006
|
43 |
DOLAN C P, MOTHERWELL J M, FRANCO S R, et al. Evaluating the potential use of functional fibrosis to facilitate improved outcomes following volumetric muscle loss injury[J]. Acta Biomater, 2022, 140: 379-388. doi:10.1016/j.actbio.2021.11.032
doi: 10.1016/j.actbio.2021.11.032
|
44 |
SU J, MORGANI S M, DAVID C J, et al. TGF-beta orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1[J]. Nature, 2020, 577(7791): 566-571. doi:10.1038/s41586-019-1897-5
doi: 10.1038/s41586-019-1897-5
|
45 |
CUI Y, YI Q, SUN W, et al. Molecular basis and therapeutic potential of myostatin on bone formation and metabolism in orthopedic disease[J]. Biofactors, 2023, 49(1): 21-31. doi:10.1002/biof.1675
doi: 10.1002/biof.1675
|