1 |
KOTECHA A, VALLABHAJOSYULA S, COVILLE H H, et al. Cardiorenal syndrome in sepsis: A narrative review[J]. J Crit Care, 2018, 43:122-127. doi:10.1016/j.jcrc.2017.08.044
doi: 10.1016/j.jcrc.2017.08.044
|
2 |
INNOCENTI F, PALMIERI V, GUZZO A, et al. SOFA score and left ventricular systolic function as predictors of short-term outcome in patients with sepsis[J]. Intern Emerg Med, 2018, 13(1): 51-58. doi:10.1007/s11739-016-1579-3
doi: 10.1007/s11739-016-1579-3
|
3 |
L'HEUREUX M, STERNBERG M, BRATH L, et al. Sepsis-Induced Cardiomyopathy: A Comprehensive Review[J]. Curr Cardiol Rep, 2020, 22(5):35. doi:10.1007/s11886-020-01277-2
doi: 10.1007/s11886-020-01277-2
|
4 |
HOLLENBERG S M, SINGER M. Pathophysiology of sepsis-induced cardiomyopathy[J]. Nat Rev Cardiol, 2021, 18(6): 424-434. doi:10.1038/s41569-020-00492-2
doi: 10.1038/s41569-020-00492-2
|
5 |
WANG J Y, WANG J Q, GU Q, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease[J]. Cancer Cell Int, 2020, 20:347. doi:10.1186/s12935-020-01450-1
doi: 10.1186/s12935-020-01450-1
|
6 |
HAN Z B, WANGX X, XU Z H, et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1[J]. Theranostics, 2021, 11(6):3000-3016. doi:10.7150/thno.47354
doi: 10.7150/thno.47354
|
7 |
杨帆,武菲菲,苏洁,等. 姜黄素通过AMPK/FUNDC1缓解LPS诱导的心肌细胞损伤[J]. 医学研究杂志,2022,51(19):30-36.
|
8 |
陈思聪,张雁斌,马扬杰. 人参皂苷Rg1对脓毒症所致心肌损伤大鼠HMGB1/NF-κB通路的影响[J]. 中国免疫学杂志,2023,39(8):1671-1677. doi:10.3969/j.issn.1000-484X.2023.08.019
doi: 10.3969/j.issn.1000-484X.2023.08.019
|
9 |
敖雪,苏醒,侯宇,等. 基于p38MAPK/NF-κB研究miR-146a干预脓毒性心肌病的分子机制[J]. 实用医学杂志,2023,39(24):3188-3194. doi:10.3969/j.issn.1006-5725.2023.24.007
doi: 10.3969/j.issn.1006-5725.2023.24.007
|
10 |
黄颖,唐立丽,关于琳,等. 脓毒症心肌损伤发病机制及治疗研究进展[J]. 实用医学杂志,2023,39(14):1848-1852. doi:10.3969/j.issn.1006-5725.2023.14.021
doi: 10.3969/j.issn.1006-5725.2023.14.021
|
11 |
ZHANG J, GUO S, PIAO H Y, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1[J]. J Physiol Biochem, 2019,75(3):379-389. doi:10.1007/s13105-019-00690-8
doi: 10.1007/s13105-019-00690-8
|
12 |
ZHU H T, GAN X L, JIANG X W, et al. ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2[J]. J Exp Clin Cancer Res, 2019, 38(1): 163. doi:10.1186/s13046-019-1159-2
doi: 10.1186/s13046-019-1159-2
|
13 |
ZHANG C Z, SAMANTA D, LU H Q, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m⁶A-demethylation of NANOG mRNA[J]. Proc Natl Acad Sci U S A, 2016, 113 (14): E2047-E2056. doi:10.1073/pnas.1602883113
doi: 10.1073/pnas.1602883113
|
14 |
ZHOU J, ZHANG X, HU J, et al. M6A demethylase ALKBH5 controls CD4+T cell pathogenicity and promotes autoimmunity[J]. Sci Adv, 2021, 7(25):eabg0470. doi:10.1126/sciadv.abg0470
doi: 10.1126/sciadv.abg0470
|
15 |
GAO Y, ZIMMER J T, VASIC R,et al. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through mA modification-mediated RNA stability control[J]. Cell Rep, 2023, 42(10):113163. doi:10.1016/j.celrep.2023.113163
doi: 10.1016/j.celrep.2023.113163
|
16 |
LANDFORS M, NAKKEN S, FUSSER M, et al. Sequencing of FTO and ALKBH5 in men undergoing infertility work-up identifies an infertility-associated variant and two missense mutations[J]. Fertil Steril, 2016, 105(5): 1170-1179.e5. doi:10.1016/j.fertnstert.2016.01.002
doi: 10.1016/j.fertnstert.2016.01.002
|
17 |
YU J J, SHEN L J, LIU Y L, et al. The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling[J]. Mol Cell Biochem, 2020, 463(1/2): 203-210. doi:10.1007/s11010-019-03641-5
doi: 10.1007/s11010-019-03641-5
|
18 |
TANG C, KLUKOVICH R, PENG H Y, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells[J]. Proc Natl Acad Sci U S A, 2018, 115(2): E325-E333. doi:10.1073/pnas.1717794115
doi: 10.1073/pnas.1717794115
|
19 |
吴春阳. 去甲基化酶ALKBH5依赖m6A修饰调控E2F8/PI3K/AKT信号轴抑制骨肉瘤恶性表型的机制研究[D]. 南昌:南昌大学,2023.
|
20 |
LIU Y, SONG R J, ZHAO L, et al. m6A demethylase ALKBH5 is required for antibacterial innate defense by intrinsic motivation of neutrophil migration[J]. Signal Transduct Target Ther, 2022, 7(1): 194. doi:10.1038/s41392-022-01020-z
doi: 10.1038/s41392-022-01020-z
|
21 |
PARBELL G P, TANG B M, NALOS M, et al. Identifying key regulatory genes in the whole blood of septic patients to monitor underlying immune dysfunctions[J]. Shock, 2013, 40(3):166-174. doi:10.1097/shk.0b013e31829ee604
doi: 10.1097/shk.0b013e31829ee604
|
22 |
TANG X, ZHANG L, WEI W. Roles of TRAFs in NF-κB signaling pathways mediated by BAFF[J]. Immunol Lett, 2018, 196:113-118. doi:10.1016/j.imlet.2018.01.010
doi: 10.1016/j.imlet.2018.01.010
|
23 |
张鹏. TRAF1转导跨膜TNF-α反向信号组成性活化NF-κB通路及其对白血病细胞耐药的影响[D]. 武汉:华中科技大学,2021.
|
24 |
QU J W, HOU Y, CHEN Q X, et al. RNA demethylase ALKBH5 promotes tumorigenesis in multiple myeloma via TRAF1-mediated activation of NF-κB and MAPK signaling pathways[J]. Oncogene, 2022, 41(3):400-413. doi:10.1038/s41388-021-02095-8
doi: 10.1038/s41388-021-02095-8
|
25 |
周颖,蒋大军,田勇,等. 抑制TRAF6调节炎症和自噬改善脓毒症小鼠的心肌损伤和心功能[J]. 实用医学杂志,2024,40(5):608-416.
|