1 |
CHARGARI C, PEIGNAUX K, ESCANDE A, et al. Radiotherapy of cervical cancer[J]. Cancer Radiother, 2022, 26(1/2): 298-308. doi:10.1016/j.canrad.2021.11.009
doi: 10.1016/j.canrad.2021.11.009
|
2 |
POLGAR C, MAJOR T, VARGA S. Radiotherapy and radio-chemotherapy of cervical cancer[J].Magy Onkol, 2022, 66(4): 307-314.
|
3 |
GUO Q, WANG R, JIN D, et al. Comparison of adjuvant chemoradiotherapy versus radiotherapy in early-stage cervical cancer patients with intermediate-risk factors: A systematic review and meta-analysis[J]. Taiwan J Obstet Gyne, 2022, 61(1): 15-23. doi:10.1016/j.tjog.2021.11.006
doi: 10.1016/j.tjog.2021.11.006
|
4 |
FAYE M D, ALFIERI J. Advances in Radiation Oncology for the Treatment of Cervical Cancer[J]. Curr Oncol, 2022, 29(2): 928-944. doi:10.3390/curroncol29020079
doi: 10.3390/curroncol29020079
|
5 |
陈默, 黄荣, 蒋军. 调强放射治疗条件下根治性宫颈癌的长期生存报道[J]. 实用医学杂志, 2020, 36(20): 2810-2814. doi:10.3969/j.issn.1006-5725.2020.20.013
doi: 10.3969/j.issn.1006-5725.2020.20.013
|
6 |
CHOPRA S, GUPTA S, KANNAN S, et al. Late Toxicity After Adjuvant Conventional Radiation Versus Image-Guided Intensity-Modulated Radiotherapy for Cervical Cancer (PARCER): A Randomized Controlled Trial[J].J Clin Oncol, 2021, 39(33): 3682-3692. doi:10.1200/jco.20.02530
doi: 10.1200/jco.20.02530
|
7 |
RIOS I, VASQUEZ I, CUERVO E, et al. Problems and solutions in IGRT for cervical cancer[J]. Rep Pract Oncol Radiother, 2018, 23(6): 517-527. doi:10.1016/j.rpor.2018.05.002
doi: 10.1016/j.rpor.2018.05.002
|
8 |
WANG J, CHEN Z, YANG C, et al. Evaluation Exploration of Atlas-Based and Deep Learning-Based Automatic Contouring for Nasopharyngeal Carcinoma[J]. Front Oncol, 2022, 12: 833816. doi:10.3389/fonc.2022.833816
doi: 10.3389/fonc.2022.833816
|
9 |
KANO Y, IKUSHIMA H, SASAKI M, et al. Automatic contour segmentation of cervical cancer using artificial intelligence[J].J Radiat Res, 2021, 62(5): 934-944. doi:10.1093/jrr/rrab070
doi: 10.1093/jrr/rrab070
|
10 |
RADICI L, FERRARIO S, BORCA V C, et al. Implementation of a Commercial Deep Learning-Based Auto Segmentation Software in Radiotherapy: Evaluation of Effectiveness and Impact on Workflow[J]. Life (Basel), 2022, 12(12): 2088. doi:10.3390/life12122088
doi: 10.3390/life12122088
|
11 |
JU Z, WU Q, YANG W, et al. Automatic segmentation of pelvic organs-at-risk using a fusion network model based on limited training samples[J]. Acta Oncol, 2020, 59(8): 933-939. doi:10.1080/0284186x.2020.1775290
doi: 10.1080/0284186x.2020.1775290
|
12 |
LIU Z, LIU X, GUAN H, et al. Development and validation of a deep learning algorithm for autodelineation of clinical target volume and organs at risk in cervical cancer radiotherapy[J]. Radiother Oncol, 2020, 153: 172-179. doi:10.1016/j.radonc.2020.09.060
doi: 10.1016/j.radonc.2020.09.060
|
13 |
NIE S, WEI Y, ZHAO F, et al. A dual deep neural network for auto-delineation in cervical cancer radiotherapy with clinical validation[J]. Radiat Oncol, 2022, 17(1): 182. doi:10.1186/s13014-022-02157-5
doi: 10.1186/s13014-022-02157-5
|
14 |
XIAO C, JIN J, YI J, et al. RefineNet-based 2D and 3D automatic segmentations for clinical target volume and organs at risks for patients with cervical cancer in postoperative radiotherapy[J]. J Appl Clin Med Phys, 2022, 23(7): e13631. doi:10.1002/acm2.13631
doi: 10.1002/acm2.13631
|
15 |
DING Y, CHEN Z, WANG Z, et al. Three-dimensional deep neural network for automatic delineation of cervical cancer in planning computed tomography images[J]. J Appl Clin Med Phys, 2022, 23(4): e13566. doi:10.1002/acm2.13566
doi: 10.1002/acm2.13566
|
16 |
钱涵, 汪红艳, 王凡. 呼吸触发前瞻门控在早期非小细胞肺癌立体定向放射治疗中剂量学优势 [J]. 实用医学杂志, 2023, 39(1): 86-91.
|
17 |
TAN MBBS MRCP FRCR MD L T, TANDERUP PHD K, KIRISITS PHD C, et al. Image-guided Adaptive Radiotherapy in Cervical Cancer[J]. Semin Radiat Oncol, 2019, 29(3): 284-298. doi:10.1016/j.semradonc.2019.02.010
doi: 10.1016/j.semradonc.2019.02.010
|
18 |
SHELLEY C E, BOLT M A, HOLLINGDALE R, et al. Implementing cone-beam computed tomography-guided online adaptive radiotherapy in cervical cancer[J].Clin Transl Radiat Oncol, 2023, 40: 100596. doi:10.1016/j.ctro.2023.100596
doi: 10.1016/j.ctro.2023.100596
|
19 |
BRETO A L, SPIELER B, ZAVALA-ROMERO O, et al. Deep Learning for Per-Fraction Automatic Segmentation of Gross Tumor Volume (GTV) and Organs at Risk (OARs) in Adaptive Radiotherapy of Cervical Cancer[J]. Front Oncol, 2022, 12: 854349. doi:10.3389/fonc.2022.854349
doi: 10.3389/fonc.2022.854349
|
20 |
CHOI M S, CHOI B S, CHUNG S Y, et al. Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer[J]. Radiother Oncol, 2020, 153: 139-145. doi:10.1016/j.radonc.2020.09.045
doi: 10.1016/j.radonc.2020.09.045
|
21 |
URAGO Y, OKAMOTO H, KANEDA T, et al. Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence and atlas-based models[J]. Radiat Oncol, 2021, 16(1): 175. doi:10.1186/s13014-021-01896-1
doi: 10.1186/s13014-021-01896-1
|
22 |
CAO M, STIEHL B, YU V Y, et al. Analysis of geometric performance and dosimetric Impact of using automatic contour segmentation for radiotherapy planning[J]. Front Oncol, 2020, 10: 1762. doi:10.3389/fonc.2020.01762
doi: 10.3389/fonc.2020.01762
|
23 |
ZHU J, CHEN X, YANG B, et al. Evaluation of Automatic Segmentation Model With Dosimetric Metrics for Radiotherapy of Esophageal Cancer[J]. Front Oncol, 2020, 10: 564737. doi:10.3389/fonc.2020.564737
doi: 10.3389/fonc.2020.564737
|
24 |
KAWULA M, PURICE D, LI M, et al. Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer[J]. Radiat Oncol, 2022, 17(1): 21. doi:10.1186/s13014-022-01985-9
doi: 10.1186/s13014-022-01985-9
|
25 |
FUNG N T C, HUNG W M, SZE C K, et al. Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: Time, geometrical, and dosimetric analysis[J]. Med Dosim, 2020, 45(1): 60-65. doi:10.1016/j.meddos.2019.06.002
doi: 10.1016/j.meddos.2019.06.002
|
26 |
何奕松,蒋家良,余行,等. 影像分割中Dice系数和Hausdorff距离的比较[J]. 中国医学物理学杂志,2019,36(11):1307-1311. doi:10.3969/j.issn.1005-202X.2019.11.012
doi: 10.3969/j.issn.1005-202X.2019.11.012
|