The Journal of Practical Medicine ›› 2026, Vol. 42 ›› Issue (2): 276-284.doi: 10.3969/j.issn.1006-5725.2026.02.013
• Feature Reports:Orthopedics • Previous Articles
Yang LIU1,2,Changbo CHENG1,2,Hongduo LU1,3,Benlu CHEN1,2,Zhiwen CHEN1,2,Zhenqiu CHEN4,5,Yinuo FAN1,5(
)
Received:2025-09-22
Revised:2025-11-19
Accepted:2025-11-25
Online:2026-01-25
Published:2026-01-22
Contact:
Yinuo FAN
E-mail:fanyinuo9557@126.com
CLC Number:
Yang LIU,Changbo CHENG,Hongduo LU,Benlu CHEN,Zhiwen CHEN,Zhenqiu CHEN,Yinuo FAN. Research progress on immune cells and related cytokines mediated imbalance of bone homeostasis and its roles in bone-related diseases[J]. The Journal of Practical Medicine, 2026, 42(2): 276-284.
| [1] |
WANG L, YOU X, ZHANG L, et al. Mechanical regulation of bone remodeling [J]. Bone Res, 2022, 10(1): 16. doi: 10.1038/s41413-022-00190-4 .
doi: 10.1038/s41413-022-00190-4 |
| [2] |
ADAMOPOULOS I E, CHOI Y, TAKAYANAGI H. Novel insights and recent progress in osteoimmunology [J]. Trends Immunol, 2025, 46(3): 192-194. doi: 10.1016/j.it.2025.02.003 .
doi: 10.1016/j.it.2025.02.003 |
| [3] |
DENG A F, WANG F X, WANG S C, et al. Bone-organ axes: Bidirectional crosstalk [J]. Mil Med Res, 2024, 11(1): 37. doi: 10.1186/s40779-024-00540-9 .
doi: 10.1186/s40779-024-00540-9 |
| [4] |
CHANDRABALAN S, DANG L, HANSEN U, et al. A novel method to efficiently differentiate human osteoclasts from blood-derived monocytes [J]. Biol Proced Online, 2024, 26(1): 7. doi: 10.1186/s12575-024-00233-6 .
doi: 10.1186/s12575-024-00233-6 |
| [5] |
OH W T, YANG Y S, XIE J, et al. Wnt-modulating gene silencers as a gene therapy for osteoporosis, bone fracture, and critical-sized bone defects [J]. Mol Ther, 2023, 31(2): 435-453. doi: 10.1016/j.ymthe.2022.09.018 .
doi: 10.1016/j.ymthe.2022.09.018 |
| [6] |
WU M, WU S, CHEN W, et al. The roles and regulatory mechanisms of tgf-beta and bmp signaling in bone and cartilage development, homeostasis and disease [J]. Cell Res, 2024, 34(2): 101-123. doi: 10.1038/s41422-023-00918-9 .
doi: 10.1038/s41422-023-00918-9 |
| [7] |
HU G, YU Y, SHARMA D, et al. Glutathione limits runx2 oxidation and degradation to regulate bone formation [J]. JCI Insight, 2023, 8(16). doi: 10.1172/jci.insight.166888 .
doi: 10.1172/jci.insight.166888 |
| [8] |
ZHENG Z, TAO S, JIN J, et al. Rkip regulates bone marrow macrophage differentiation to mediate osteoclastogenesis and h-type vessel formation [J]. Nat Commun, 2025, 16(1): 7604. doi: 10.1038/s41467-025-62972-8 .
doi: 10.1038/s41467-025-62972-8 |
| [9] |
胡康一, 宋永嘉, 文皓楠, 等. 骨免疫学:T细胞在骨代谢调控中的双向作用 [J]. 中国骨质疏松杂志, 2025, 31(6): 885-891. doi: 10.3969/j.issn.1006-7108.2025.06.017 .
doi: 10.3969/j.issn.1006-7108.2025.06.017 |
| [10] |
张玉红, 单新洁, 周俊. Mir-155通过Socs1/Stat3途径调控类风湿性关节炎中炎症反应和Th17/Treg失衡 [J]. 实用医学杂志, 2024, 40(13): 1791-1796. doi: 10.3969/j.issn.1006-5725. 2024.13.005 .
doi: 10.3969/j.issn.1006-5725. 2024.13.005 |
| [11] |
SAPRA L, BHARDWAJ A, MISHRA P K, et al. Regulatory b cells (bregs) inhibit osteoclastogenesis and play a potential role in ameliorating ovariectomy-induced bone loss [J]. Front Immunol, 2021, 12: 691081. doi: 10.3389/fimmu.2021.691081 .
doi: 10.3389/fimmu.2021.691081 |
| [12] |
GARLANDA C, DI CEGLIE I, JAILLON S. Il-1 family cytokines in inflammation and immunity [J]. Cell Mol Immunol, 2025, 22(11): 1345-1362. doi: 10.1038/s41423-025-01358-8 .
doi: 10.1038/s41423-025-01358-8 |
| [13] |
FUKAWA Y, KAYAMORI K, TSUCHIYA M, et al. Il-1 generated by oral squamous cell carcinoma stimulates tumor-induced and rankl-induced osteoclastogenesis: A possible mechanism of bone resorption induced by the infiltration of oral squamous cell carcinoma [J]. Int J Mol Sci, 2022, 24(1):688. doi: 10.3390/ijms24010688 .
doi: 10.3390/ijms24010688 |
| [14] |
WANG H, NI Z, YANG J, et al. Il-1beta promotes osteogenic differentiation of mouse bone marrow mesenchymal stem cells via the bmp/smad pathway within a certain concentration range [J]. Exp Ther Med, 2020, 20(4): 3001-3008. doi: 10.3892/etm. 2020. 9065 .
doi: 10.3892/etm. 2020. 9065 |
| [15] |
TAKEUCHI T, YOSHIDA H, TANAKA S. Role of interleukin-6 in bone destruction and bone repair in rheumatoid arthritis [J]. Autoimmun Rev, 2021, 20(9): 102884. doi: 10.1016/j.autrev. 2021. 102884 .
doi: 10.1016/j.autrev. 2021. 102884 |
| [16] |
ZHANG Y, LI X, CHIHARA T, et al. Effect of tnf-alpha and il-6 on compact bone-derived cells [J]. Tissue Eng Regen Med, 2021, 18(3): 441-451. doi: 10.1007/s13770-021-00336-1 .
doi: 10.1007/s13770-021-00336-1 |
| [17] |
PALMISANO B, RIMINUCCI M, KARSENTY G. Interleukin-6 signaling in osteoblasts regulates bone remodeling during exercise [J]. Bone, 2023, 176: 116870. doi: 10.1016/j.bone.2023. 116870 .
doi: 10.1016/j.bone.2023. 116870 |
| [18] |
TANG H, ZHU S, CHEN K, et al. Il-17a regulates autophagy and promotes osteoclast differentiation through the erk/mtor/beclin1 pathway [J]. PLoS One, 2023, 18(2): e281845. doi: 10.1371/journal.pone.0281845 .
doi: 10.1371/journal.pone.0281845 |
| [19] |
LEE K T, LIN C Y, LIU S C, et al. Il-17 promotes il-18 production via the mek/erk/mir-4492 axis in osteoarthritis synovial fibroblasts [J]. Aging (Albany Ny), 2024, 16(2): 1829-1844. doi: 10.18632/aging.205462 .
doi: 10.18632/aging.205462 |
| [20] |
AL-QAHTANI F, ALQHTANI N, DIVAKAR D D, et al. Levels of whole salivary advanced glycation end products and interleukin-17 and peri-implant clinical and radiographic status in patients with osteoporosis at 6-years' follow-up [J]. BMC Oral Health, 2022, 22(1): 526. doi: 10.1186/s12903-022-02591-7 .
doi: 10.1186/s12903-022-02591-7 |
| [21] |
JANG D I, LEE A H, SHIN H Y, et al. The role of tumor necrosis factor alpha (tnf-alpha) in autoimmune disease and current tnf-alpha inhibitors in therapeutics [J]. Int J Mol Sci, 2021, 22(5):2719. doi: 10.3390/ijms22052719 .
doi: 10.3390/ijms22052719 |
| [22] |
MARAHLEH A, KITAURA H, OHORI F, et al. Tnf-alpha directly enhances osteocyte rankl expression and promotes osteoclast formation [J]. Front Immunol, 2019, 10: 2925. doi: 10.3389/fimmu.2019.02925 .
doi: 10.3389/fimmu.2019.02925 |
| [23] |
WANG S, ZHANG H, ZHU Y, et al. Progranulin protects against osteoporosis by regulating osteoclast and osteoblast balance via tnfr pathway [J]. J Cell Mol Med, 2025, 29(3): e70385. doi: 10.1111/jcmm.70385 .
doi: 10.1111/jcmm.70385 |
| [24] |
WONG C W, HUANG Y Y, HURLSTONE A. The role of ifn-gamma-signalling in response to immune checkpoint blockade therapy [J]. Essays Biochem, 2023, 67(6): 991-1002. doi: 10.1042/ EBC20230001 .
doi: 10.1042/ EBC20230001 |
| [25] |
WANG H, JOSHI P, HONG S H, et al. Predicting the targets of irf8 and nfatc1 during osteoclast differentiation using the machine learning method framework ctap [J]. BMC Genomics, 2022, 23(1): 14. doi: 10.1186/s12864-021-08159-z .
doi: 10.1186/s12864-021-08159-z |
| [26] |
PLACE D E, MALIREDDI R, KIM J, et al. Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins [J]. Nat Commun, 2021, 12(1): 496. doi: 10.1038/ s41467-020-20807-8 .
doi: 10.1038/ s41467-020-20807-8 |
| [27] |
GILBERT S J, BLAIN E J, MASON D J. Interferon-gamma modulates articular chondrocyte and osteoblast metabolism through protein kinase r-independent and dependent mechanisms [J]. Biochem Biophys Rep, 2022, 32: 101323. doi: 10.1016/j.bbrep.2022.101323 .
doi: 10.1016/j.bbrep.2022.101323 |
| [28] |
DAMAN A W, JOSEFOWICZ S Z. Epigenetic and transcriptional control of interferon-beta [J]. J Exp Med, 2021, 218(9):e20210039. doi: 10.1084/jem.20210039 .
doi: 10.1084/jem.20210039 |
| [29] |
王梦蝶, 吴虹, 王荣慧, 等. Rankl介导的诱导破骨细胞分化的相关经典信号通路研究进展 [J]. 中国药理学通报, 2020, 36(7): 898-902. doi: 10.3969/j.issn.1001-1978.2020.07.003 .
doi: 10.3969/j.issn.1001-1978.2020.07.003 |
| [30] |
LIU X, ZHANG L, WANG G, et al. Single-cell transcriptome profiling identifies the activation of type i interferon signaling in ossified posterior longitudinal ligament [J]. Front Med, 2024, 18(6): 1087-1099. doi: 10.1007/s11684-024-1075-5 .
doi: 10.1007/s11684-024-1075-5 |
| [31] |
DENG Z, FAN T, XIAO C, et al. Tgf-beta signaling in health, disease, and therapeutics [J]. Signal Transduct Target Ther, 2024, 9(1): 61. doi: 10.1038/s41392-024-01764-w .
doi: 10.1038/s41392-024-01764-w |
| [32] |
LIU Y, ZHAO L, LI M, et al. Osteocytes produces rankl via wnt-tgfbeta signaling axis for osteoclastogenesis [J]. Int J Biol Sci, 2025, 21(13): 5821-5841. doi: 10.7150/ijbs.117481 .
doi: 10.7150/ijbs.117481 |
| [33] |
张慎启, 石磊, 李文金, 等. 骨质疏松相关骨免疫学进展 [J]. 中国老年学杂志, 2021, 41(13): 2907-2912. doi: 10.3969/j.issn.1005-9202.2021.13.062 .
doi: 10.3969/j.issn.1005-9202.2021.13.062 |
| [34] |
XU J, YU L, LIU F, et al. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review [J]. Front Immunol, 2023, 14: 1222129. doi: 10.3389/fimmu.2023. 1222129 .
doi: 10.3389/fimmu.2023. 1222129 |
| [35] |
ZHIVODERNIKOV I V, KIRICHENKO T V, MARKINA Y V, et al. Molecular and cellular mechanisms of osteoporosis [J]. Int J Mol Sci, 2023, 24(21): 15772. doi: 10.3390/ijms242115772 .
doi: 10.3390/ijms242115772 |
| [36] |
CHEN M, FU W, XU H, et al. Pathogenic mechanisms of glucocorticoid-induced osteoporosis [J]. Cytokine Growth Factor Rev, 2023, 70: 54-66. doi: 10.1016/j.cytogfr.2023.03.002 .
doi: 10.1016/j.cytogfr.2023.03.002 |
| [37] |
RONG X, KOU Y, ZHANG Y, et al. Ed-71 prevents glucocorticoid-induced osteoporosis by regulating osteoblast differentiation via notch and wnt/beta-catenin pathways [J]. Drug Des Devel Ther, 2022, 16: 3929-3946. doi: 10.2147/DDDT.S377001 .
doi: 10.2147/DDDT.S377001 |
| [38] |
姜楠, 田新平, 曾小峰. 《2024中国类风湿关节炎诊疗指南》解读 [J]. 协和医学杂志, 2025, 16(1): 28-34. doi: 10.12290/xhyxzz.2024-1018 .
doi: 10.12290/xhyxzz.2024-1018 |
| [39] |
KONDO N, KURODA T, KOBAYASHI D. Cytokine networks in the pathogenesis of rheumatoid arthritis [J]. Int J Mol Sci, 2021, 22(20):10922. doi: 10.3390/ijms222010922 .
doi: 10.3390/ijms222010922 |
| [40] |
邱安琪. 细胞因子在类风湿关节炎发病机制中的研究进展 [J]. 检验医学与临床, 2023, 20(6): 830-834. doi: 10.3969/j.issn.1672-9455.2023.06.028 .
doi: 10.3969/j.issn.1672-9455.2023.06.028 |
| [41] |
YOKOTA K, SATO K, MIYAZAKI T, et al. Characterization and function of tumor necrosis factor and interleukin-6-induced osteoclasts in rheumatoid arthritis [J]. Arthritis Rheumatol, 2021, 73(7): 1145-1154. doi: 10.1002/art.41666 .
doi: 10.1002/art.41666 |
| [42] |
中国微循环学会骨微循环专业委员会. 股骨头坏死临床诊疗技术专家共识(2022 年) [J]. 中国修复重建外科杂志, 2022, 36(11): 1319-1326. doi: 10.7507/1002-1892.202207134 .
doi: 10.7507/1002-1892.202207134 |
| [43] | 杨晓强, 廖家如, 林锟, 等. 基于单细胞转录组学探索激素性股骨头坏死囊性变内皮细胞的转录特征及活血通络法的干预作用 [J]. 中华中医药杂志, 2025, 40(6): 2838-2845. |
| [44] |
ZHENG L W, WANG W C, MAO X Z, et al. Tnf-alpha regulates the early development of avascular necrosis of the femoral head by mediating osteoblast autophagy and apoptosis via the p38 mapk/nf-kappab signaling pathway [J]. Cell Biol Int, 2020, 44(9): 1881-1889. doi: 10.1002/cbin.11394 .
doi: 10.1002/cbin.11394 |
| [45] |
MA J, GE J, GAO F, et al. The role of immune regulatory cells in nontraumatic osteonecrosis of the femoral head: A retrospective clinical study [J]. Biomed Res Int, 2019, 2019: 1302015. doi: 10.1155/2019/1302015 .
doi: 10.1155/2019/1302015 |
| [46] |
孟志成, 乔卫平, 赵阳, 等. 免疫细胞及相关细胞因子在骨关节炎发病及治疗中的作用 [J]. 中国组织工程研究, 2024, 28(2): 280-287. doi: 10.12307/2023.679 .
doi: 10.12307/2023.679 |
| [47] |
董勇勇, 段广斌, 茹嘉, 等. 膝关节骨性关节炎患者血清Il-1Β、Tnf-Α表达及其与术后疼痛指标的关系 [J]. 中国实用医刊, 2022, 49(18): 54-57. doi: 10.3760/cma.j.cn115689-20220611-02484 .
doi: 10.3760/cma.j.cn115689-20220611-02484 |
| [48] |
DEFOIS A, BON N, CHARPENTIER A, et al. Osteoarthritic chondrocytes undergo a glycolysis-related metabolic switch upon exposure to il-1b or tnf [J]. Cell Commun Signal, 2023, 21(1): 137. doi: 10.1186/s12964-023-01150-z .
doi: 10.1186/s12964-023-01150-z |
| [49] |
SUN G, BA C L, GAO R, et al. Association of il-6, il-8, mmp-13 gene polymorphisms with knee osteoarthritis susceptibility in the chinese han population [J]. Biosci Rep, 2019, 39(2):BSR20181346. doi: 10.1042/BSR20181346 .
doi: 10.1042/BSR20181346 |
| [50] |
FANG C, ZHONG R, LU S, et al. Trem2 promotes macrophage polarization from m1 to m2 and suppresses osteoarthritis through the nf-kappab/cxcl3 axis [J]. Int J Biol Sci, 2024, 20(6): 1992-2007. doi: 10.7150/ijbs.91519 .
doi: 10.7150/ijbs.91519 |
| [51] |
王郡, 孟娟. 类风湿关节炎靶向治疗新时代 [J]. 协和医学杂志, 2025, 16(1): 19-27. doi: 10.12290/xhyxzz.2024-0842 .
doi: 10.12290/xhyxzz.2024-0842 |
| [52] |
ZHENG X, WU Y, BI J, et al. The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy [J]. Cell Mol Immunol, 2022, 19(2): 192-209. doi: 10.1038/s41423-021-00786-6 .
doi: 10.1038/s41423-021-00786-6 |
| [1] |
ZHU Peijun, LAI Chunhua, CHENG Mingwei, HE Yiheng, XU Shulan. .
Promotive role of electrically biomembranes in bone regeneration through regulating the polarization of Macrophages [J]. The Journal of Practical Medicine, 2021, 37(10): 1257-1262. |
| [2] | YU Mingfang, LIU Xuguang, WU Xiao. Research progress on the relationship between clock gene Bmal1 and bone metabolism [J]. The Journal of Practical Medicine, 2020, 36(20): 2881-2884. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

