The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (24): 3958-3968.doi: 10.3969/j.issn.1006-5725.2025.24.021
• Investigations • Previous Articles
Qiaobin HU1,Zhida DAI2,Zhixiang ZHANG1,Ziyin GUO1,Yiyi LIU1,Chunlei ZHANG3,Jinghua. LI4(
)
Received:2025-07-23
Online:2025-12-25
Published:2025-12-25
Contact:
Jinghua. LI
E-mail:ljh@gzucm.edu.cn
CLC Number:
Qiaobin HU,Zhida DAI,Zhixiang ZHANG,Ziyin GUO,Yiyi LIU,Chunlei ZHANG,Jinghua. LI. Mendelian randomization analysis reveals causal associations of oral microbiome and circulating metabolites with biliary tract cancer[J]. The Journal of Practical Medicine, 2025, 41(24): 3958-3968.
Tab.1
Genetic correlation between oral microbiota and biliary tract cancer"
| 部位 | 微生物名称 | 遗传相关性 | 标准误差 | P值 |
|---|---|---|---|---|
| 唾液 | Campylobacter A concisus I mgs 556 | 0.147 | 0.519 | 0.777 |
| Lachnoanaerobaculum sp000296385 mgs 2787 | -0.690 | 0.656 | 0.293 | |
| Lancefieldella sp000564995 mgs 1829 | 0.048 | 0.387 | 0.901 | |
| Prevotella melaninogenica mgs 1984 | 0.702 | 0.720 | 0.329 | |
| Prevotella multiformis mgs 380 | 0.080 | 0.225 | 0.723 | |
| Streptococcus mitis AT mgs 1319 | -0.124 | 0.440 | 0.778 | |
| Streptococcus mitis L mgs 538 | 0.465 | 0.621 | 0.454 | |
| 舌背 | Aggregatibacter segnis mgs 1370 | 0.079 | 0.550 | 0.886 |
| Aggregatibacter sp000466335 mgs 2199 | 0.073 | 0.622 | 0.907 | |
| Alloprevotella rava mgs 541 | -0.075 | 0.328 | 0.818 | |
| Haemophilus haemolyticus mgs 2719 | -0.473 | 0.686 | 0.490 | |
| Lachnoanaerobaculum sp000287675 mgs 3128 | -0.320 | 0.892 | 0.720 | |
| Pauljensenia cellulosilytica mgs 3249 | -0.222 | 1.087 | 0.838 | |
| Porphyromonas uenonis mgs 507 | 0.298 | 0.510 | 0.559 | |
| Solobacterium moorei mgs 709 | 0.448 | 0.704 | 0.524 | |
| Streptococcus mitis L mgs 538 | 0.609 | 0.724 | 0.401 | |
| Streptococcus oralis Z mgs 3165 | 0.536 | 0.626 | 0.392 | |
| SZUA-359 | 0.199 | 0.503 | 0.692 |
Tab.2
MR analyses on selected oral microbiota and circulating metabolites"
| 部位 | 微生物名称 | 代谢物 | OR(95%CI) | P值 | FDR q值 |
|---|---|---|---|---|---|
| 唾液 | Lancefieldella sp000564995 mgs 1829 | 直接胆红素 | 0.874(0.772 ~ 0.990) | 0.034 | 0.043 |
| Prevotella seregens mgs 811 | 直接胆红素 | 1.166(1.045 ~ 1.302) | 0.006 | 0.032 | |
| Streptococcus mitis L mgs 538 | 锰 | 0.899(0.813 ~ 0.993)) | 0.037 | 0.043 | |
| 舌背 | Aggregatibacter segnis mgs 1370 | 直接胆红素 | 1.099(1.008 ~ 1.197) | 0.031 | 0.043 |
| Eikenella corrodens mgs 3538 | 锰 | 0.899(0.826 ~ 0.978) | 0.014 | 0.032 | |
| Streptococcus oralis Z mgs 3165 | 瓜氨酸 | 1.083(1.017 ~ 1.154) | 0.013 | 0.032 |
Tab.3
Results of the mediation analyses on oral microbiota, circulating metabolites and biliary tract cancer"
| 部位 | 微生物名称 | 代谢物 | 总效应 | 间接效应 | 中介效应 |
|---|---|---|---|---|---|
| 唾液 | Lancefieldella sp000564995 mgs 1829 | 直接胆红素 | -0.832 | -0.077 | 0.093 |
| Prevotella seregens mgs 811 | 直接胆红素 | 0.870 | 0.088 | 0.102 | |
| 舌背 | Aggregatibacter segnis mgs 1370 | 直接胆红素 | 0.526 | 0.054 | 0.103 |
| Eikenella corrodens mgs 3538 | 锰 | 0.969 | 0.072 | 0.074 | |
| Streptococcus oralis Z mgs 3165 | 瓜氨酸 | -0.817 | -0.072 | 0.088 |
| [1] |
VALLE J W, KELLEY R K, NERVI B, et al. Biliary tract cancer[J]. Lancet, 2021, 397(10272): 428-444. doi:10.1016/s0140-6736(21)00153-7
doi: 10.1016/s0140-6736(21)00153-7 |
| [2] |
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. doi:10.3322/caac.21763
doi: 10.3322/caac.21763 |
| [3] |
WHEATLEY R C, KILGOUR E, JACOBS T, et al. Potential influence of the microbiome environment in patients with biliary tract cancer and implications for therapy[J]. Br J Cancer, 2022, 126(5): 693-705. doi:10.1038/s41416-021-01583-8
doi: 10.1038/s41416-021-01583-8 |
| [4] |
AAS J A, PASTER B J, STOKES L N, et al. Defining the normal bacterial flora of the oral cavity[J]. J Clin Microbiol, 2005, 43(11): 5721-5732. doi:10.1128/jcm.43.11.5721-5732.2005
doi: 10.1128/jcm.43.11.5721-5732.2005 |
| [5] |
MIRA A. Oral Microbiome Studies: Potential Diagnostic and Therapeutic Implications[J]. Adv Dent Res, 2018, 29(1): 71-77. doi:10.1177/0022034517737024
doi: 10.1177/0022034517737024 |
| [6] |
王佩佩, 华飞, 黄霞, 等. 2型糖尿病伴慢性牙周炎患者的口腔菌群微环境研究进展[J]. 实用医学杂志, 2023, 39(10): 1320-1324. doi:10.3969/j.issn.1006-5725.2023.10.023
doi: 10.3969/j.issn.1006-5725.2023.10.023 |
| [7] |
WADE W G. The oral microbiome in health and disease[J]. Pharmacol Res, 2013, 69(1): 137-143. doi:10.1016/j.phrs.2012.11.006
doi: 10.1016/j.phrs.2012.11.006 |
| [8] |
LAN Z, LIU W J, CUI H, et al. The role of oral microbiota in cancer[J]. Front. Microbiol, 2023, 14: 1253025. doi:10.3389/fmicb.2023.1253025
doi: 10.3389/fmicb.2023.1253025 |
| [9] |
GUNCHICK V, JIA G, WEN W, et al. Associations between pre-diagnostic plasma metabolites and biliary tract cancer risk in the prospective UK Biobank cohort[J]. Am J Epidemiol, 2024, 194(8): 2394-2401. doi:10.1093/aje/kwae402
doi: 10.1093/aje/kwae402 |
| [10] |
HEMANI G, ZHENG J, ELSWORTH B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. eLife, 2018, 7: e34408. doi:10.7554/elife.34408
doi: 10.7554/elife.34408 |
| [11] |
LIU X, TONG X, ZHU J, et al. Metagenome-genome-wide association studies reveal human genetic impact on the oral microbiome[J]. Cell Discov, 2021, 7(1): 117. doi:10.1038/s41421-021-00356-0
doi: 10.1038/s41421-021-00356-0 |
| [12] | ISHIGAKI K, AKIYAMA M, KANAI M, et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases[J]. Nat Genet, 2020, 52(7): 669-679. |
| [13] |
LIU X, TONG X, ZOU Y, et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome[J]. Nat Genet, 2022, 54(1): 52-61. doi:10.1038/s41588-021-00968-y
doi: 10.1038/s41588-021-00968-y |
| [14] |
SANNA S, VAN ZUYDAM N R, MAHAJAN A, et al. Causal relationships between gut microbiome, short-chain fatty acids and metabolic diseases[J]. Nat Genet, 2019, 51(4): 600-605. doi:10.1038/s41588-019-0350-x
doi: 10.1038/s41588-019-0350-x |
| [15] |
1000 GENOMES PROJECT CONSORTIUM, ABECASIS G R, ALTSHULER D L, et al. A map of human genome variation from population scale sequencing[J]. Nature, 2010, 467(7319): 1061-1073. doi:10.1038/nature09534
doi: 10.1038/nature09534 |
| [16] |
BURGESS S, THOMPSON S G, Genetics Collaboration CRP CHD. Avoiding bias from weak instruments in Mendelian randomization studies[J]. Int J Epidemiol, 2011, 40(3): 755-764. doi:10.1093/ije/dyr036
doi: 10.1093/ije/dyr036 |
| [17] |
BURGESS S, THOMPSON S G. Mendelian Randomization: Methods for Using Genetic Variants in Causal Estimation[M]. New York: CRC Press, 2015: 1-224. doi:10.1201/b18084-7
doi: 10.1201/b18084-7 |
| [18] |
ZHAO J, MING J, HU X, et al. Bayesian weighted Mendelian randomization for causal inference based on summary statistics[J]. Bioinformatics, 2020, 36(5): 1501-1508. doi:10.1093/bioinformatics/btz749
doi: 10.1093/bioinformatics/btz749 |
| [19] |
BULIK-SULLIVAN B K, LOH P R, FINUCANE H K, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies[J]. Nat Genet, 2015, 47(3): 291-295. doi:10.1038/ng.3211
doi: 10.1038/ng.3211 |
| [20] |
BURGESS S, DANIEL R M, BUTTERWORTH A S, et al. Network Mendelian randomization: Using genetic variants as instrumental variables to investigate mediation in causal pathways[J]. Int J Epidemiol, 2015, 44(2): 484-495. doi:10.1093/ije/dyu176
doi: 10.1093/ije/dyu176 |
| [21] |
VERBANCK M, CHEN C Y, NEALE B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698. doi:10.1038/s41588-018-0099-7
doi: 10.1038/s41588-018-0099-7 |
| [22] |
RAO B C, ZHANG G Z, ZOU Y W, et al. Alterations in the human oral microbiome in cholangiocarcinoma[J]. Military Medical Research, 2022, 9(1): 62. doi:10.1186/s40779-022-00423-x
doi: 10.1186/s40779-022-00423-x |
| [23] |
WANG X L, XU H W, LIU N N. Oral Microbiota: A New Insight into Cancer Progression, Diagnosis and Treatment[J]. Phenomics, 2023, 3(5): 535-547. doi:10.1007/s43657-023-00124-y
doi: 10.1007/s43657-023-00124-y |
| [24] |
RAO B, REN T, WANG X, et al. Dysbiosis in the Human Microbiome of Cholangiocarcinoma[J]. Front Physiol, 2021, 12: 715536. doi:10.3389/fphys.2021.715536
doi: 10.3389/fphys.2021.715536 |
| [25] |
FRANKARD J, RODRIGUEZ-VILLALOBOS H, STRUELENS M J, et al. Haemophilus parainfluenzae: An Underdiagnosed Pathogen of Biliary Tract Infections?[J]. Eur J Clin Microbiol Infect Dis, 2004, 23(1): 46-48. doi:10.1007/s10096-003-1050-z
doi: 10.1007/s10096-003-1050-z |
| [26] |
KIRISHIMA M, YOKOYAMA S, MATSUO K, et al. Gallbladder microbiota composition is associated with pancreaticobiliary and gallbladder cancer prognosis[J]. BMC Microbiol, 2022, 22(1): 147. doi:10.1186/s12866-022-02557-3
doi: 10.1186/s12866-022-02557-3 |
| [27] |
PEREIRA P, AHO V, AROLA J, et al. Bile microbiota in primary sclerosing cholangitis: Impact on disease progression and development of biliary dysplasia[J]. PLoS One, 2017, 12(8): e0182924. doi:10.1371/journal.pone.0182924
doi: 10.1371/journal.pone.0182924 |
| [28] |
MIYABE K, CHANDRASEKHARA V, WONGJARUPONG N, et al. Potential Role of Inflammation-Promoting Biliary Microbiome in Primary Sclerosing Cholangitis and Cholangiocarcinoma[J]. Cancers (Basel), 2022, 14(9): 2120. doi:10.3390/cancers14092120
doi: 10.3390/cancers14092120 |
| [29] |
VACCA M, CELANO G, CALABRESE F M, et al. The Controversial Role of Human Gut Lachnospiraceae[J]. Microorganisms, 2020, 8(4): 573. doi:10.3390/microorganisms8040573
doi: 10.3390/microorganisms8040573 |
| [30] |
CAI X, PENG Y, GONG Y, et al. Variations of bile bacterial community alongside gallstone disease progression and key taxa involved in poor outcomes after endoscopic surgery[J]. Eur J Med Res, 2023, 28(1): 313. doi:10.1186/s40001-023-01308-y
doi: 10.1186/s40001-023-01308-y |
| [31] |
MOLINERO N, RUIZ L, MILANI C, et al. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile[J]. Microbiome, 2019, 7(1): 100. doi:10.1186/s40168-019-0712-8
doi: 10.1186/s40168-019-0712-8 |
| [32] |
DI CARLO P, SERRA N, ALDUINA R, et al. A systematic review on omics data (metagenomics, metatranscriptomics, and metabolomics) in the role of microbiome in gallbladder disease[J]. Front Physiol, 2022, 13: 888233. doi:10.3389/fphys.2022.888233
doi: 10.3389/fphys.2022.888233 |
| [33] |
VÍTEK L, ZELENKA J, ZADINOVÁ M, et al. The impact of intestinal microflora on serum bilirubin levels[J]. J Hepatol, 2005, 42(2): 238-243. doi:10.1016/j.jhep.2004.10.012
doi: 10.1016/j.jhep.2004.10.012 |
| [34] |
FEVERY J. Bilirubin in clinical practice: A review[J]. Liver Int, 2008, 28(5): 592-605. doi:10.1111/j.1478-3231.2008.01716.x
doi: 10.1111/j.1478-3231.2008.01716.x |
| [35] |
BOYD L N C, ALI M, KAM L, et al. The Diagnostic Value of the CA19-9 and Bilirubin Ratio in Patients with Pancreatic Cancer, Distal Bile Duct Cancer and Benign Periampullary Diseases, a Novel Approach[J]. Cancers (Basel), 2022, 14(2): 344. doi:10.3390/cancers14020344
doi: 10.3390/cancers14020344 |
| [36] |
LIANG Q, LIU H, ZHANG T, et al. Serum metabolomics uncovering specific metabolite signatures of intra- and extrahepatic cholangiocarcinoma[J]. Mol Biosyst, 2016, 12(2): 334-340. doi:10.1039/c5mb00572h
doi: 10.1039/c5mb00572h |
| [37] |
BOSMA E F, RAU M H, VAN GIJTENBEEK L A, et al. Regulation and distinct physiological roles of manganese in bacteria[J]. FEMS Microbiol Rev, 2021, 45(6): fuab028. doi:10.1093/femsre/fuab028
doi: 10.1093/femsre/fuab028 |
| [38] |
CAI L, WANG Y, CHEN Y, et al. Manganese( ii ) complexes stimulate antitumor immunity via aggravating DNA damage and activating the cGAS-STING pathway[J]. Chem Sci, 2023, 14(16): 4375-4389. doi:10.1039/d2sc06036a
doi: 10.1039/d2sc06036a |
| [39] |
HERNROTH B, HOLM I, GONDIKAS A, et al. Manganese Inhibits Viability of Prostate Cancer Cells[J]. Anticancer Res, 2018, 38(1): 137-145. doi:10.21873/anticanres.12201
doi: 10.21873/anticanres.12201 |
| [40] |
KASAI F, ESHAK E S, TAMAKOSHI A, et al. Dietary Manganese Intake and Risk of Liver Cancer in Japanese Men and Women: The JACC Study[J]. Nutr Cancer, 2023, 75(1): 154-163. doi:10.1080/01635581.2022.2099912
doi: 10.1080/01635581.2022.2099912 |
| [41] |
BARBOUR A, ELEBYARY O, FINE N, et al. Metabolites of the oral microbiome: Important mediators of multikingdom interactions[J]. FEMS Microbiol Rev, 2022, 46(1): fuab039. doi:10.1093/femsre/fuab039
doi: 10.1093/femsre/fuab039 |
| [42] |
AGUAYO E, MARTÍNEZ-SÁNCHEZ A, FERNÁNDEZ-LOBATO B, et al. L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health[J]. Appl Sci, 2021, 11(7): 3293. doi:10.3390/app11073293
doi: 10.3390/app11073293 |
| [43] |
XIE Z, LIN M, XING B, et al. Citrulline regulates macrophage metabolism and inflammation to counter aging in mice[J]. Sci Adv, 2025, 11(10): eads4957. doi:10.1126/sciadv.ads4957
doi: 10.1126/sciadv.ads4957 |
| [44] |
EREZ A, SHCHELOCHKOV O A, PLON S E, et al. Insights into the Pathogenesis and Treatment of Cancer from Inborn Errors of Metabolism[J]. Am J Hum Genet, 2011, 88(4): 402-421. doi:10.1016/j.ajhg.2011.03.005
doi: 10.1016/j.ajhg.2011.03.005 |
| [1] | Jianxiong ZHUANG,Rong CHEN,Jian TU,Zhengran YU,Xiaoqing ZHENG,Yunbing CHANG,Honglin. GU. Causal association of 35 biomarkers, including apolipoprotein B, serum phosphate, and calcium, with bone mineral density: A Mendelian randomization analysis [J]. The Journal of Practical Medicine, 2025, 41(24): 3947-3958. |
| [2] | Yin HUA,Xiaoyan WANG,Zhen WANG,Yongning XIN,Shousheng. LIU. The relationship between ulcerative colitis and the risk of hypothyroidism: A two⁃mendelian randomization study [J]. The Journal of Practical Medicine, 2024, 40(6): 827-832. |
| [3] | Zishen LIU,Yingying ZHENG,Mengqi YUAN,Ganlin ZHANG,Guowang. YANG. The causal relationship between chemokine CCL2 and lung cancer: a two⁃sample Mendelian randomization study [J]. The Journal of Practical Medicine, 2024, 40(4): 532-536. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

