The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (24): 3947-3958.doi: 10.3969/j.issn.1006-5725.2025.24.020
• Investigations • Previous Articles
Jianxiong ZHUANG1,Rong CHEN2,Jian TU3,Zhengran YU1,Xiaoqing ZHENG1,Yunbing CHANG1,Honglin. GU1(
)
Received:2025-07-24
Online:2025-12-25
Published:2025-12-25
Contact:
Honglin. GU
E-mail:guhonglin@gdph.org.cn
CLC Number:
Jianxiong ZHUANG,Rong CHEN,Jian TU,Zhengran YU,Xiaoqing ZHENG,Yunbing CHANG,Honglin. GU. Causal association of 35 biomarkers, including apolipoprotein B, serum phosphate, and calcium, with bone mineral density: A Mendelian randomization analysis[J]. The Journal of Practical Medicine, 2025, 41(24): 3947-3958.
Tab.1
Data of biomarkers and various bone density"
| 暴露或结局 | 数据来源 | 数据公布年份 | 样本量 | PMID |
|---|---|---|---|---|
| 35种生物标志物 | UKB(https://www.ukbiobank.ac.uk/) | 2021 | 363 228 | 7867639 |
| 全身骨密度 | GEFOS(http://www.gefos.org/) | 2018 | 56 284 | 29304378 |
| 足跟骨密度 | 2019 | 426 824 | 29304378 | |
| 颅骨骨密度 | 2023 | 43 800 | 37402774 | |
| 股骨颈骨密度 | 2015 | 32 735 | 29304378 | |
| 腰椎骨密度 | 2015 | 28 498 | 26367794 | |
| 前臂骨密度 | 2015 | 8 143 | 26367794 |
Tab.2
The Mendelian randomization results of biomarkers and bone mineral density"
| 结局 | 暴露 | 单核苷酸 多态性数量 | MR分析 | SE | Β(95%CI) | P值 | OR(95%CI) | 校正 P值 |
|---|---|---|---|---|---|---|---|---|
| 全身骨密度 | 血尿素氮 | 164 | 逆方差加权法 | 0.028 | 0.100(0.044 ~ 0.155) | < 0.001 | 1.10(1.05 ~ 1.17) | 0.003 |
| 164 | MR?Egger回归 | 0.066 | 0.151(0.022 ~ 0.279) | 0.023 | 1.16(1.02 ~ 1.32) | 0.253 | ||
| 164 | 加权中位数法 | 0.037 | 0.102(0.031 ~ 0.174) | 0.005 | 1.11(1.03 ~ 1.19) | 0.061 | ||
| 164 | 简单中位数法 | 0.055 | 0.130(0.023 ~ 0.238) | 0.018 | 1.14(1.02 ~ 1.27) | 0.267 | ||
| 全身骨密度 | 肾小球滤过率 | 309 | 逆方差加权法 | 0.020 | -0.082(-0.121 ~ -0.043) | < 0.001 | 0.92(0.89 ~ 0.96) | 0.000 |
| 309 | MR?Egger 回归 | 0.046 | -0.099(-0.189 ~ -0.008) | 0.033 | 0.91(0.83 ~ 0.99) | 0.253 | ||
| 309 | 加权中位数法 | 0.027 | -0.096(-0.15 ~ -0.043) | < 0.001 | 0.91(0.86 ~ 0.96) | 0.008 | ||
| 309 | 简单中位数法 | 0.069 | -0.144(-0.279 ~ -0.01) | 0.036 | 0.87(0.76 ~ 0.99) | 0.267 | ||
| 足跟骨密度 | 载脂蛋白B | 185 | 逆方差加权法 | 0.008 | -0.018(-0.035 ~ -0.002) | 0.027 | 0.98(0.97 ~ 1.00) | 0.114 |
| 185 | MR?Egger回归 | 0.012 | -0.032(-0.055 ~ -0.008) | 0.009 | 0.97(0.95 ~ 0.99) | 0.319 | ||
| 185 | 加权中位数法 | 0.008 | -0.024(-0.039 ~ -0.01) | 0.001 | 0.98(0.96 ~ 0.99) | 0.009 | ||
| 185 | 简单中位数法 | 0.006 | -0.029(-0.041 ~ -0.017) | < 0.001 | 0.97(0.96 ~ 0.98) | 0.000 | ||
| 颅骨骨密度 | 甘油三酯 | 197 | 逆方差加权法 | 0.020 | -0.048(-0.088 ~ -0.008) | 0.018 | 0.95(0.92 ~ 0.99) | 0.071 |
| 197 | MR?Egger 回归 | 0.030 | -0.099(-0.159 ~ -0.04) | 0.001 | 0.91(0.85 ~ 0.96) | 0.045 | ||
| 197 | 加权中位数法 | 0.030 | -0.101(-0.16 ~ -0.042) | 0.001 | 0.9(0.85 ~ 0.96) | 0.026 | ||
| 197 | 简单中位数法 | 0.027 | -0.116(-0.169 ~ -0.062) | < 0.001 | 0.89(0.84 ~ 0.94) | 0.001 | ||
| 颅骨骨密度 | 总蛋白 | 194 | 逆方差加权法 | 0.031 | -0.088(-0.149 ~ -0.027) | 0.004 | 0.92(0.86 ~ 0.97) | 0.039 |
| 194 | MR?Egger回归 | 0.071 | -0.193(-0.333 ~ -0.052) | 0.008 | 0.82(0.72 ~ 0.95) | 0.090 | ||
| 194 | 加权中位数法 | 0.042 | -0.105(-0.188 ~ -0.023) | 0.013 | 0.90(0.83 ~ 0.98) | 0.073 | ||
| 194 | 简单中位数法 | 0.094 | -0.220(-0.406 ~ -0.035) | 0.021 | 0.80(0.67 ~ 0.97) | 0.121 | ||
| 颅骨骨密度 | 血磷 | 137 | 逆方差加权法 | 0.029 | 0.086(0.03 ~ 0.143) | 0.003 | 1.09(1.03 ~ 1.15) | 0.031 |
| 137 | MR?Egger 回归 | 0.048 | 0.105(0.011 ~ 0.199) | 0.031 | 1.11(1.01 ~ 1.22) | 0.212 | ||
| 137 | 加权中位数法 | 0.043 | 0.138(0.053 ~ 0.223) | 0.001 | 1.15(1.05 ~ 1.25) | 0.026 | ||
| 137 | 简单中位数法 | 0.045 | 0.126(0.037 ~ 0.214) | 0.006 | 1.13(1.04 ~ 1.24) | 0.074 | ||
| 颅骨骨密度 | 中性粒细胞 碱性磷酸酶 | 242 | 逆方差加权法 | 0.023 | -0.072(-0.116 ~ -0.027) | 0.002 | 0.93(0.89 ~ 0.97) | 0.028 |
| 242 | MR?Egger回归 | 0.049 | -0.112(-0.209 ~ -0.015) | 0.024 | 0.89(0.81 ~ 0.98) | 0.210 | ||
| 242 | 加权中位数法 | 0.035 | -0.100(-0.169 ~ -0.031) | 0.005 | 0.90(0.84 ~ 0.97) | 0.053 | ||
| 242 | 简单中位数法 | 0.050 | -0.138(-0.236 ~ -0.04) | 0.006 | 0.87(0.79 ~ 0.96) | 0.074 | ||
| 颅骨骨密度 | 血钙 | 162 | 逆方差加权法 | 0.029 | -0.107(-0.163 ~ -0.051) | < 0.001 | 0.90(0.85 ~ 0.95) | 0.006 |
| 162 | MR?Egger 回归 | 0.054 | -0.165(-0.271 ~ -0.059) | 0.003 | 0.85(0.76 ~ 0.94) | 0.047 | ||
| 162 | 加权中位数法 | 0.044 | -0.101(-0.186 ~ -0.015) | 0.021 | 0.90(0.83 ~ 0.98) | 0.096 | ||
| 162 | 简单中位数法 | 0.046 | -0.113(-0.204 ~ -0.022) | 0.016 | 0.89(0.82 ~ 0.98) | 0.121 | ||
| 股骨颈骨密度 | 血磷 | 137 | 逆方差加权法 | 0.029 | 0.086(0.029 ~ 0.144) | 0.003 | 1.09(1.03 ~ 1.15) | 0.059 |
| 137 | MR?Egger 回归 | 0.049 | 0.097(0.001 ~ 0.193) | 0.049 | 1.10(1.00 ~ 1.21) | 0.575 | ||
| 137 | 加权中位数法 | 0.040 | 0.134(0.056 ~ 0.211) | 0.001 | 1.14(1.06 ~ 1.24) | 0.025 | ||
| 137 | 简单中位数法 | 0.041 | 0.122(0.042 ~ 0.202) | 0.003 | 1.13(1.04 ~ 1.22) | 0.113 | ||
| 腰椎骨密度 | 血钙 | 160 | 逆方差加权法 | 0.033 | -0.088(-0.151 ~ -0.024) | 0.007 | 0.92(0.86 ~ 0.98) | 0.102 |
| 160 | MR?Egger 回归 | 0.061 | -0.131(-0.251 ~ -0.011) | 0.033 | 0.88(0.78 ~ 0.99) | 0.498 | ||
| 160 | 加权中位数法 | 0.054 | -0.173(-0.279 ~ -0.066) | 0.001 | 0.84(0.76 ~ 0.94) | 0.045 | ||
| 160 | 简单中位数法 | 0.057 | -0.148(-0.261 ~ -0.035) | 0.011 | 0.86(0.77 ~ 0.97) | 0.338 | ||
| 前臂骨密度 | 血磷 | 118 | 逆方差加权法 | 0.053 | -0.120(-0.223 ~ -0.016) | 0.023 | 0.89(0.80 ~ 0.98) | 0.274 |
| 118 | MR?Egger 回归 | 0.086 | -0.176(-0.344 ~ -0.008) | 0.042 | 0.84(0.71 ~ 0.99) | 0.461 | ||
| 118 | 加权中位数法 | 0.084 | -0.189(-0.355 ~ -0.024) | 0.025 | 0.83(0.70 ~ 0.98) | 0.456 | ||
| 118 | 简单中位数法 | 0.082 | -0.182(-0.344 ~ -0.02) | 0.029 | 0.83(0.71 ~ 0.98) | 0.281 |
Tab.3
The Mendelian randomization results of biomarkers and bone mineral density in the replicated datasets"
| 结局 | 暴露 | 单核苷酸 多态性数量 | MR分析 | SE | Β(95%CI) | P值 | OR(95%CI) |
|---|---|---|---|---|---|---|---|
| 全身骨密度 | 血尿素氮 | 139 | 逆方差加权法 | 0.027 | 0.058(0.005 ~ 0.111) | 0.033 | 1.06(1.00 ~ 1.12) |
| 139 | MR?Egger 回归 | 0.069 | 0.075(-0.060 ~ 0.210) | 0.278 | 1.08(0.94 ~ 1.23) | ||
| 139 | 简单中位数法 | 0.033 | 0.072(0.007 ~ 0.137) | 0.031 | 1.07(1.01 ~ 1.15) | ||
| 139 | 加权中位数法 | 0.033 | 0.065(0.001 ~ 0.128) | 0.047 | 1.07(1.00 ~ 1.14) | ||
| 全身骨密度 | 肾小球滤过率 | 270 | 逆方差加权法 | 0.019 | -0.063(-0.101 ~ -0.025) | 0.001 | 0.94(0.90 ~ 0.97) |
| 270 | MR?Egger 回归 | 0.045 | -0.005(-0.093 ~ 0.083) | 0.911 | 0.99(0.91 ~ 1.09) | ||
| 270 | 简单中位数法 | 0.023 | -0.067(-0.113 ~ -0.021) | 0.004 | 0.93(0.89 ~ 0.98) | ||
| 270 | 加权中位数法 | 0.023 | -0.053(-0.099 ~ -0.008) | 0.022 | 0.95(0.91 ~ 0.99) | ||
| 足跟骨密度 | 载脂蛋白B | 149 | 逆方差加权法 | 0.009 | -0.022(-0.039 ~ -0.004) | 0.014 | 0.98(0.96 ~ 1.00) |
| 149 | MR?Egger 回归 | 0.013 | -0.027(-0.052 ~ -0.003) | 0.032 | 0.97(0.95 ~ 1.00) | ||
| 149 | 简单中位数法 | 0.010 | -0.007(-0.027 ~ 0.013) | 0.511 | 0.99(0.97 ~ 1.01) | ||
| 149 | 加权中位数法 | 0.008 | -0.019(-0.035 ~ -0.002) | 0.026 | 0.98(0.97 ~ 1.00) | ||
| 颅骨骨密度 | 甘油三酯 | 186 | 逆方差加权法 | 0.018 | -0.059(-0.095 ~ -0.024) | 0.001 | 0.94(0.91 ~ 0.98) |
| 186 | MR?Egger 回归 | 0.027 | -0.105(-0.158 ~ -0.052) | < 0.001 | 0.90(0.85 ~ 0.95) | ||
| 186 | 简单中位数法 | 0.029 | -0.053(-0.109 ~ 0.003) | 0.066 | 0.95(0.90 ~ 1.00) | ||
| 186 | 加权中位数法 | 0.025 | -0.063(-0.113 ~ -0.014) | 0.013 | 0.94(0.89 ~ 0.99) | ||
| 颅骨骨密度 | 总蛋白 | 198 | 逆方差加权法 | 0.025 | -0.072(-0.122 ~ -0.022) | 0.004 | 0.93(0.89 ~ 0.98) |
| 198 | MR?Egger 回归 | 0.048 | -0.100(-0.193 ~ -0.006) | 0.038 | 0.91(0.82 ~ 0.99) | ||
| 198 | 简单中位数法 | 0.032 | -0.053(-0.116 ~ 0.011) | 0.104 | 0.95(0.89 ~ 1.01) | ||
| 198 | 加权中位数法 | 0.031 | -0.092(-0.154 ~ -0.031) | 0.003 | 0.91(0.86 ~ 0.97) | ||
| 颅骨骨密度 | 血磷 | 132 | 逆方差加权法 | 0.031 | 0.060(0.000 ~ 0.121) | 0.050 | 1.06(1.00 ~ 1.13) |
| 132 | MR?Egger 回归 | 0.055 | 0.043(-0.064 ~ 0.150) | 0.427 | 1.04(0.94 ~ 1.16) | ||
| 132 | 简单中位数法 | 0.039 | 0.141(0.064 ~ 0.218) | 0.000 | 1.15(1.07 ~ 1.24) | ||
| 132 | 加权中位数法 | 0.035 | 0.077(0.008 ~ 0.146) | 0.030 | 1.08(1.01 ~ 1.16) | ||
| 颅骨骨密度 | 中性粒细胞 碱性磷酸酶 | 157 | 逆方差加权法 | 0.017 | -0.045(-0.078 ~ -0.012) | 0.008 | 0.96(0.93 ~ 0.99) |
| 157 | MR-Egger 回归 | 0.027 | 0.007(-0.046 ~ 0.060) | 0.797 | 1.01(0.95 ~ 1.06) | ||
| 157 | 简单中位数法 | 0.025 | -0.091(-0.141 ~ -0.042) | 0.000 | 0.91(0.87 ~ 0.96) | ||
| 157 | 加权中位数法 | 0.022 | -0.052(-0.095 ~ -0.010) | 0.015 | 0.95(0.91 ~ 0.99) | ||
| 颅骨骨密度 | 血钙 | 232 | 逆方差加权法 | 0.023 | -0.079(-0.124 ~ -0.035) | 0.000 | 0.92(0.88 ~ 0.97) |
| 232 | MR-Egger 回归 | 0.041 | -0.122(-0.202 ~ -0.042) | 0.003 | 0.89(0.82 ~ 0.96) | ||
| 232 | 简单中位数法 | 0.032 | -0.099(-0.161 ~ -0.036) | 0.002 | 0.91(0.85 ~ 0.96) | ||
| 232 | 加权中位数法 | 0.032 | -0.071(-0.133 ~ -0.009) | 0.025 | 0.93(0.88 ~ 0.99) | ||
| 股骨颈骨密度 | 血磷 | 138 | 逆方差加权法 | 0.031 | 0.084(0.022 ~ 0.146) | 0.007 | 1.09(1.02 ~ 1.16) |
| 138 | MR-Egger 回归 | 0.054 | 0.031(-0.076 ~ 0.137) | 0.573 | 1.03(0.93 ~ 1.15) | ||
| 138 | 简单中位数法 | 0.039 | 0.123(0.045 ~ 0.200) | 0.002 | 1.13(1.05 ~ 1.22) | ||
| 138 | 加权中位数法 | 0.036 | 0.093(0.023 ~ 0.163) | 0.009 | 1.10(1.02 ~ 1.18) | ||
| 腰椎骨密度 | 血钙 | 164 | 逆方差加权法 | 0.025 | -0.085(-0.135 ~ -0.035) | 0.001 | 0.92(0.87 ~ 0.97) |
| 164 | MR-Egger 回归 | 0.046 | -0.163(-0.252 ~ -0.073) | 0.000 | 0.85(0.78 ~ 0.93) | ||
| 164 | 简单中位数法 | 0.034 | -0.086(-0.152 ~ -0.019) | 0.012 | 0.92(0.86 ~ 0.98) | ||
| 164 | 加权中位数法 | 0.038 | -0.118(-0.193 ~ -0.044) | 0.002 | 0.89(0.82 ~ 0.96) | ||
| 前臂骨密度 | 血磷 | 136 | 逆方差加权法 | 0.050 | -0.011(-0.109 ~ 0.087) | 0.827 | 0.99(0.90 ~ 1.09) |
| 136 | MR-Egger 回归 | 0.088 | -0.087(-0.259 ~ 0.086) | 0.325 | 0.92(0.77 ~ 1.09) | ||
| 136 | 简单中位数法 | 0.070 | 0.003(-0.135 ~ 0.140) | 0.969 | 1.00(0.87 ~ 1.15) | ||
| 136 | 加权中位数法 | 0.067 | -0.063(-0.195 ~ 0.069) | 0.351 | 0.94(0.82 ~ 1.07) |
Tab.4
Sensitivity analysis of biomarkers and bone mineral density"
| 结局 | 暴露 | 异质性分析 | 水平多效性 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| MR分析 | CochranQ检验 | 异质性P值 | MR-Egger截距 | SE | MR-PRESSOGlobal test P 值 | ||||
| 全身骨密度 | 血尿素氮 | MR-Egger 回归 | 291.517 | < 0.001 | -0.001 | 0.002 | 0.392 | ||
| 逆方差加权法 | 292.844 | < 0.001 | |||||||
| 肾小球滤过率 | MR-Egger 回归 | 525.996 | < 0.001 | 0.000 | 0.001 | 0.694 | |||
| 逆方差加权法 | 526.261 | < 0.001 | |||||||
| 足跟骨密度 | 载脂蛋白B | MR-Egger 回归 | 728.443 | < 0.001 | 0.001 | 0.001 | 0.129 | ||
| 逆方差加权法 | 737.706 | < 0.001 | |||||||
| 颅骨骨密度 | 甘油三酯 | MR-Egger 回归 | 251.240 | 0.004 | 0.002 | 0.001 | 0.026 | ||
| 逆方差加权法 | 257.692 | 0.002 | |||||||
| 总蛋白 | MR-Egger 回归 | 297.775 | < 0.001 | 0.003 | 0.002 | 0.107 | |||
| 逆方差加权法 | 301.838 | < 0.001 | |||||||
| 血磷 | MR-Egger 回归 | 201.097 | < 0.001 | -0.001 | 0.002 | 0.634 | |||
| 逆方差加权法 | 201.436 | < 0.001 | |||||||
中性粒细胞 碱性磷酸酶 | MR-Egger 回归 | 291.704 | 0.013 | 0.001 | 0.001 | 0.358 | |||
| 逆方差加权法 | 292.733 | 0.013 | |||||||
| 血钙 | MR-Egger 回归 | 244.770 | < 0.001 | 0.002 | 0.002 | 0.211 | |||
| 逆方差加权法 | 247.186 | < 0.001 | |||||||
| 股骨颈骨密度 | 血磷 | MR-Egger 回归 | 189.966 | 0.001 | -0.000 | 0.002 | 0.780 | ||
| 逆方差加权法 | 190.077 | 0.002 | |||||||
| 腰椎骨密度 | 血钙 | MR-Egger 回归 | 205.371 | 158.000 | 0.002 | 0.002 | 0.211 | ||
| 逆方差加权法 | 206.293 | 159.000 | |||||||
| 前臂骨密度 | 血磷 | MR-Egger 回归 | 69.453 | 116.000 | 0.002 | 0.003 | 0.405 | ||
| 逆方差加权法 | 70.151 | 117.000 | |||||||
| [1] |
ZHANG J, DENNISON E, PRIETO-ALHAMBRA D. Osteoporosis epidemiology using international cohorts[J]. Curr Opin Rheumatol,2020,32(4):387-393. doi:10.1097/bor.0000000000000722
doi: 10.1097/bor.0000000000000722 |
| [2] |
BOUVARD B, ANNWEILER C, LEGRAND E. Osteoporosis in older adults[J]. Joint Bone Spine,2021,88(3):105135. doi:10.1016/j.jbspin.2021.105135
doi: 10.1016/j.jbspin.2021.105135 |
| [3] |
WANG J, SHU B, TANG D Z, et al. The prevalence of osteoporosis in China, a community based cohort study of osteoporosis[J]. Front Public Health, 2023, 11: 1084005. doi:10.3389/fpubh.2023.1084005
doi: 10.3389/fpubh.2023.1084005 |
| [4] |
SLART R, PUNDA M, ALI D S, et al. Updated practice guideline for dual-energy X-ray absorptiometry (DXA)[J]. Eur J Nucl Med Mol Imaging, 2025, 52(2): 539-563. doi:10.1007/s00259-024-06912-6
doi: 10.1007/s00259-024-06912-6 |
| [5] | 李小海,谢光友,梁力嵩,等. 贵州中老年人腰椎QCT骨密度及脊柱脆性骨折的骨密度分析[J]. 实用医学杂志,2023,39(1):60-65. |
| [6] |
NISSINEN T, SUORANTA S, SAAVALAINEN T, et al. Detecting pathological features and predicting fracture risk from dual-energy X-ray absorptiometry images using deep learning[J]. Bone Rep, 2021, 14: 101070. doi:10.1016/j.bonr.2021.101070
doi: 10.1016/j.bonr.2021.101070 |
| [7] |
STUURSMA A, STROOT I, VERMEULEN K M, et al. Reliability, costs, and radiation dose of dual-energy X-ray absorptiometry in diagnosis of radiologic sarcopenia in surgically menopausal women[J]. Insights Imaging, 2024, 15(1): 104. doi:10.1186/s13244-024-01677-w
doi: 10.1186/s13244-024-01677-w |
| [8] |
PANAHI N, ARJMAND B, OSTOVAR A, et al. Metabolomic biomarkers of low BMD: A systematic review[J]. Osteoporos Int,2021,32(12):2407-2431. doi:10.1007/s00198-021-06037-8
doi: 10.1007/s00198-021-06037-8 |
| [9] |
FUJIYOSHI A, POLGREEN L E, HURLEY D L, et al. A cross-sectional association between bone mineral density and parathyroid hormone and other biomarkers in community-dwelling young adults: The CARDIA study[J]. J Clin Endocrinol Metab, 2013, 98(10): 4038-4046. doi:10.1210/jc.2013-2198
doi: 10.1210/jc.2013-2198 |
| [10] |
BARBOUR K E, BOUDREAU R, DANIELSON M E, et al. Inflammatory markers and the risk of hip fracture: The Women's Health Initiative[J]. J Bone Miner Res, 2012, 27(5): 1167-1176. doi:10.1002/jbmr.1559
doi: 10.1002/jbmr.1559 |
| [11] |
SKRIVANKOVA V W, RICHMOND R C, WOOLF B, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement[J]. JAMA,2021,326(16):1614-1621. doi:10.1001/jama.2021.18236
doi: 10.1001/jama.2021.18236 |
| [12] |
BURGESS S, SMALL D S, THOMPSON S G. A review of instrumental variable estimators for Mendelian randomization[J]. Stat Methods Med Res, 2017,26(5): 2333-2355. doi:10.1177/0962280215597579
doi: 10.1177/0962280215597579 |
| [13] |
SINNOTT-ARMSTRONG N, TANIGAWA Y, AMAR D, et al. Genetics of 35 blood and urine biomarkers in the UK Biobank[J]. Nat Genet, 2021, 53(2): 185-194. doi:10.1038/s41588-020-00757-z
doi: 10.1038/s41588-020-00757-z |
| [14] | MEDINA-GOMEZ C, KEMP J P, TRAJANOSKA K, et al. Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects[J]. Am J Hum Genet, 2018, 102(1): 88-102. |
| [15] |
MORRIS J A, KEMP J P, YOULTEN S E, et al. An atlas of genetic influences on osteoporosis in humans and mice[J]. Nat Genet, 2019, 51(2): 258-266. doi:10.1038/s41588-018-0302-x
doi: 10.1038/s41588-018-0302-x |
| [16] | ZHENG H F, FORGETTA V, HSU Y H, et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture[J]. Nature, 2015, 526(7571): 112-117. |
| [17] |
MIAO J, WU Y, SUN Z, et al. Valid inference for machine learning-assisted genome-wide association studies[J]. Nat Genet, 2024, 56(11): 2361-2369. doi:10.1038/s41588-024-01934-0
doi: 10.1038/s41588-024-01934-0 |
| [18] |
LOH P R, KICHAEV G, GAZAL S, et al. Mixed-model association for biobank-scale datasets[J]. Nat Genet,2018,50(7):906-908. doi:10.1038/s41588-018-0144-6
doi: 10.1038/s41588-018-0144-6 |
| [19] |
SURAKKA I, FRITSCHE L G, ZHOU W, et al. MEPE loss-of-function variant associates with decreased bone mineral density and increased fracture risk[J]. Nat Commun,2020,11(1):4093. doi:10.1038/s41467-020-17315-0
doi: 10.1038/s41467-020-17315-0 |
| [20] |
BOWDEN J, DAVEY S G, HAYCOCK P C, et al. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314. doi:10.1002/gepi.21965
doi: 10.1002/gepi.21965 |
| [21] |
BOWDEN J, DEL G M F, MINELLI C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization[J]. Stat Med,2017, 36(11): 1783-1802. doi:10.1002/sim.7221
doi: 10.1002/sim.7221 |
| [22] |
VERBANCK M, CHEN C Y, NEALE B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet,2018,50(5):693-698. doi:10.1038/s41588-018-0099-7
doi: 10.1038/s41588-018-0099-7 |
| [23] |
PIERCE B L, BURGESS S. Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators[J]. Am J Epidemiol, 2013, 178(7): 1177-1184. doi:10.1093/aje/kwt084
doi: 10.1093/aje/kwt084 |
| [24] |
TANG G, FENG L, PEI Y, et al. Low BMI, blood calcium and vitamin D, kyphosis time, and outdoor activity time are independent risk factors for osteoporosis in postmenopausal women[J]. Front Endocrinol (Lausanne), 2023, 14: 1154927. doi:10.3389/fendo.2023.1154927
doi: 10.3389/fendo.2023.1154927 |
| [25] |
STROMSNES K, FAJARDO C M, SOTO-RODRIGUEZ S, et al. Osteoporosis: Causes, Mechanisms, Treatment and Prevention: Role of Dietary Compounds[J]. Pharmaceuticals (Basel), 2024, 17(12): 1697. doi:10.3390/ph17121697
doi: 10.3390/ph17121697 |
| [26] |
HASSANEIN M M, HURI H Z, BAIG K, et al. Determinants and Effects of Vitamin D Supplementation in Postmenopausal Women: A Systematic Review[J]. Nutrients, 2023, 15(3): 685. doi:10.3390/nu15030685
doi: 10.3390/nu15030685 |
| [27] | FATIMA K, RAZZAK M A, LATIF A, et al. Relationship between Renal Function and Bone Mineral Density in Postmenopausal Women[J]. Mymensingh Med J,2023,32(1):144-152. |
| [28] |
KANG D H, PARK C H, KIM H W, et al. Kidney function and bone mineral density in chronic kidney disease patients[J]. Clin Kidney J,2024,17(9):sfae248. doi:10.1093/ckj/sfae248
doi: 10.1093/ckj/sfae248 |
| [29] |
CANNATA-ANDIA J B, MARTIN-CARRO B, MARTIN-VIRGALA J, et al. Chronic Kidney Disease-Mineral and Bone Disorders: Pathogenesis and Management[J]. Calcif Tissue Int,2021,108(4):410-422. doi:10.1007/s00223-020-00777-1
doi: 10.1007/s00223-020-00777-1 |
| [30] |
STEHMAN-BREEN C. Bone mineral density measurements in dialysis patients[J]. Semin Dial,2001,14(3):228-229. doi:10.1046/j.1525-139x.2001.00057-2.x
doi: 10.1046/j.1525-139x.2001.00057-2.x |
| [31] |
SHU J, TAN A, LI Y, et al. The correlation between serum total alkaline phosphatase and bone mineral density in young adults[J]. BMC Musculoskelet Disord, 2022, 23(1): 467. doi:10.1186/s12891-022-05438-y
doi: 10.1186/s12891-022-05438-y |
| [32] |
BROWN J P, DON-WAUCHOPE A, DOUVILLE P, et al. Current use of bone turnover markers in the management of osteoporosis[J]. Clin Biochem, 2022, 109-110: 1-10. doi:10.1016/j.clinbiochem.2022.09.002
doi: 10.1016/j.clinbiochem.2022.09.002 |
| [33] |
KAN B, ZHAO Q, WANG L, et al. Association between lipid biomarkers and osteoporosis: A cross-sectional study[J]. BMC Musculoskelet Disord, 2021, 22(1): 759. doi:10.1186/s12891-021-04643-5
doi: 10.1186/s12891-021-04643-5 |
| [34] |
ZHAO X, TAN N, ZHANG Y, et al. Associations between apolipoprotein B and bone mineral density: A population-based study[J]. BMC Musculoskelet Disord, 2023, 24(1): 861. doi:10.1186/s12891-023-06990-x
doi: 10.1186/s12891-023-06990-x |
| [35] |
SNIDERMAN A, LANGLOIS M, COBBAERT C. Update on apolipoprotein B[J]. Curr Opin Lipidol,2021,32(4):226-230. doi:10.1097/mol.0000000000000754
doi: 10.1097/mol.0000000000000754 |
| [36] |
WANG T, HE C. TNF-alpha and IL-6: The Link between Immune and Bone System[J]. Curr Drug Targets,2020,21(3):213-227. doi:10.2174/1389450120666190821161259
doi: 10.2174/1389450120666190821161259 |
| [37] |
FISCHER V, HAFFNER-LUNTZER M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol,2022,123:14-21. doi:10.1016/j.semcdb.2021.05.014
doi: 10.1016/j.semcdb.2021.05.014 |
| [38] | 陈帅,金杰,韩化伟,等. 两样本孟德尔随机化分析循环炎症细胞因子与骨密度的因果关联[J]. 中国组织工程研究, 2025, 29(8): 1556-1564. |
| [39] |
YANG X L, CUI Z Z, ZHANG H, et al. Causal link between lipid profile and bone mineral density: A Mendelian randomization study[J]. Bone, 2019, 127: 37-43. doi:10.1016/j.bone.2019.05.037
doi: 10.1016/j.bone.2019.05.037 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

