The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (23): 3711-3716.doi: 10.3969/j.issn.1006-5725.2025.23.012
• Clinical Research • Previous Articles
Xueni YANG,Yihang HU,Min JI,Yuqin LI,Hongyan LU,Ming. CHANG(
)
Received:2025-09-28
Online:2025-12-10
Published:2025-12-18
Contact:
Ming. CHANG
E-mail:changming8@163.com
CLC Number:
Xueni YANG,Yihang HU,Min JI,Yuqin LI,Hongyan LU,Ming. CHANG. Association between neutrophic extracellular trap marker (cell⁃free DNA) and mycoplasma pneumoniae pneumonia in children[J]. The Journal of Practical Medicine, 2025, 41(23): 3711-3716.
Tab.1
Comparison of general data, routine laboratory indicators and serum cf-DNA levels in the MPP and control group"
| 项目 | 对照组(n = 50) | MPP组(n = 115) | χ2/t值 | P值 |
|---|---|---|---|---|
| 性别/例 | 2.511 | 0.113 | ||
| 男 | 28 | 49 | ||
| 女 | 22 | 66 | ||
| 年龄/岁 | 6.06 ± 1.42 | 5.20 ± 2.25 | 1.347 | 0.181 |
| WBC/(× 109/L) | 5.98 ± 1.30 | 9.01 ± 2.47 | 5.817 | < 0.001 |
| cf-DNA/(ng/mL) | 103.60 ± 32.05 | 233.60 ± 50.75 | 16.700 | < 0.001 |
Tab.2
Comparison of general data, routine laboratory indicators and serum levels of cf-DN-A, CRP, D-Dimer, LDH, and cytokines of children in the mild and severe group"
| 项目 | 轻症组 (n = 75) | 重症组 (n = 40) | χ2/t值 | P值 |
|---|---|---|---|---|
| 性别(男/女)/例 | 35/40 | 14/26 | 1.452 | 0.228 |
| 年龄/岁 | 4.95 ± 2.23 | 5.67 ± 2.23 | 1.660 | 0.100 |
| WBC/(× 109/L) | 8.46 ± 2.10 | 10.03 ± 2.80 | 3.383 | 0.001 |
| cf-DNA/(ng/mL) | 206.70 ± 36.59 | 283.90 ± 31.60 | 11.290 | < 0.001 |
| CRP/(mg/L) | 15.74 ± 4.19 | 28.20 ± 8.20 | 10.780 | < 0.001 |
| D-二聚体/(mg/L) | 0.65 ± 0.26 | 1.70 ± 0.73 | 10.140 | < 0.001 |
| LDH/(U/L) | 335.10 ± 55.89 | 382.50 ± 95.63 | 3.357 | 0.001 |
| IL-6/(pg/mL) | 19.40 ± 5.09 | 30.35 ± 7.33 | 9.380 | < 0.001 |
| TNF-α/(pg/mL) | 6.48 ± 3.86 | 8.87 ± 3.73 | 3.183 | 0.002 |
| IFN-γ/(pg/mL) | 15.89 ± 4.37 | 24.16 ± 7.35 | 7.562 | < 0.001 |
Tab.4
Multivariate logistic regression analysis of factors influencing the occurrence of severe MPP"
| 指标 | β | SE | Waldχ2 | P值 | OR | 95%CI |
|---|---|---|---|---|---|---|
| cf-DNA | 0.044 | 0.019 | 5.479 | 0.019 | 1.045 | 1.007 ~ 1.084 |
| CRP | 0.228 | 0.112 | 4.164 | 0.041 | 1.256 | 1.009 ~ 1.564 |
| D-二聚体 | 0.519 | 1.022 | 0.258 | 0.612 | 1.680 | 0.227 ~ 12.452 |
| LDH | 0.007 | 0.008 | 0.793 | 0.373 | 1.007 | 0.992 ~ 1.022 |
| IL-6 | 0.178 | 0.081 | 4.812 | 0.028 | 1.195 | 1.019 ~ 1.401 |
| TNF-α | 0.179 | 0.138 | 1.678 | 0.195 | 1.196 | 0.912 ~ 1.568 |
| IFN-γ | 0.015 | 0.107 | 0.020 | 0.887 | 1.015 | 0.824 ~ 1.251 |
Tab.5
Predictive value of serum cf-DNA, CRP, and IL-6 for disease severity in childrenwith MPP"
| 指标 | AUC | 95%CI | 约登指数 | 截断值 | 灵敏度 | 特异度 | P值 |
|---|---|---|---|---|---|---|---|
| cf-DNA | 0.945 | 0.907 ~ 0.983 | 0.755 | 252.50 ng/mL | 0.875 | 0.880 | < 0.001 |
| CRP | 0.927 | 0.878 ~ 0.975 | 0.722 | 22.50 mg/L | 0.775 | 0.947 | < 0.001 |
| IL-6 | 0.856 | 0.768 ~ 0.945 | 0.710 | 27.36 pg/mL | 0.750 | 0.960 | < 0.001 |
| 三者联合 | 0.981 | 0.960 ~ 1.000 | 0.898 | - | 0.925 | 0.973 | < 0.001 |
| [1] | 刘金荣, 赵成松, 赵顺英. 《儿童社区获得性肺炎诊疗规范(2019年版)》解读[J]. 中国实用儿科杂志, 2020, 35(3): 185-187. |
| [2] |
ROH E J, SHIM J Y, CHUNG E H. Epidemiology and surveillance implications of community-acquired pneumonia in children[J]. Clin Exp Pediatr, 2022, 65(12): 563-573. doi:10.3345/cep.2022.00374
doi: 10.3345/cep.2022.00374 |
| [3] | 赵顺英, 钱素云, 陈志敏, 等. 儿童肺炎支原体肺炎诊疗指南(2023年版)[J]. 新发传染病电子杂志, 2024, 9(1): 73-79. |
| [4] |
BIAN C, LI S, HUO S, et al. Association of atopy with disease severity in children with Mycoplasma pneumoniae pneumonia[J]. Front Pediatr, 2023, 11: 1281479. doi:10.3389/fped.2023.1281479
doi: 10.3389/fped.2023.1281479 |
| [5] |
LEE W, KO S Y, AKASAKA H, et al. Neutrophil extracellular traps promote pre-metastatic niche formation in the omentum by expanding innate-like B cells that express IL-10[J]. Cancer Cell, 2025, 43(1): 69-85. doi:10.1016/j.ccell.2024.12.004
doi: 10.1016/j.ccell.2024.12.004 |
| [6] |
VARJú I, TANKA-SALAMON A, KOLEV K. Neutrophil Extracellular Traps: At the Interface of Thrombosis and Comorbidities[J]. Semin Thromb Hemost, 2025, 51(7): 724-735. doi:10.1055/a-2548-0805
doi: 10.1055/a-2548-0805 |
| [7] |
HUANG S U-S, O’SULLIVAN K M. The Expanding Role of Extracellular Traps in Inflammation and Autoimmunity: The New Players in Casting Dark Webs[J]. Int J Mol Sci, 2022, 23(7): 3793. doi:10.3390/ijms23073793
doi: 10.3390/ijms23073793 |
| [8] |
GIERLIKOWSKA B, STACHURA A, GIERLIKOWSKI W, et al. The Impact of Cytokines on Neutrophils’ Phagocytosis and NET Formation during Sepsis—A Review[J]. Int J Mol Sci, 2022, 23(9): 5076. doi:10.3390/ijms23095076
doi: 10.3390/ijms23095076 |
| [9] |
MEYER SAUTEUR P M. Childhood community-acquired pneumonia[J]. Eur J Pediatr, 2024, 183(3): 1129-1136. doi:10.1007/s00431-023-05366-6
doi: 10.1007/s00431-023-05366-6 |
| [10] |
KANG D, YUN K W, LEE T, et al. Treatment modalities for fever duration in children with Mycoplasma pneumoniae pneumonia[J]. Sci Rep, 2025, 15(1): 14860. doi:10.1038/s41598-025-99537-0
doi: 10.1038/s41598-025-99537-0 |
| [11] |
CHOO S, KIM S-H, LEE E. Clinical significance of Mycoplasma pneumoniae specific IgM titer in children hospitalized with Mycoplasma pneumoniae pneumonia[J]. BMC Infect Dis, 2022, 22(1): 470. doi:10.1186/s12879-022-07456-6
doi: 10.1186/s12879-022-07456-6 |
| [12] |
ZHANG X, SUN R, HOU J, et al. Clinical characteristics and risk factors of pulmonary embolism with Mycoplasma pneumoniae pneumonia in children[J]. Sci Rep, 2024, 14(1): 24043. doi:10.1038/s41598-024-74302-x
doi: 10.1038/s41598-024-74302-x |
| [13] |
XU M, LI Y, SHI Y, et al. Molecular epidemiology of Mycoplasma pneumoniae pneumonia in children, Wuhan, 2020–2022[J]. BMC Microbiol, 2024, 24(1): 23. doi:10.1186/s12866-024-03180-0
doi: 10.1186/s12866-024-03180-0 |
| [14] | 彭力, 钟礼立, 林琳, 等. 黏蛋白MUC5AC在肺炎支原体肺炎患儿气道中的表达及临床意义[J]. 实用医学杂志, 2023, 39(20): 2618-2622. |
| [15] |
FANG C, MAO Y, JIANG M, et al. Pediatric Critical Illness Score, Clinical Characteristics and Comprehensive Treatment of Children with Severe Mycoplasma Pneumoniae Pneumonia[J]. Front Surg, 2022, 9: 897550. doi:10.3389/fsurg.2022.897550
doi: 10.3389/fsurg.2022.897550 |
| [16] |
ZHANG H, LI X, WANG J, et al. Baicalin relieves Mycoplasma pneumoniae infection‑induced lung injury through regulating microRNA‑221 to inhibit the TLR4/NF‑κB signaling pathway[J]. Mol Med Rep, 2021, 24(2): 571. doi:10.3892/mmr.2021.12210
doi: 10.3892/mmr.2021.12210 |
| [17] |
HU S, YE J, GUO Q, et al. Serum lactate dehydrogenase is associated with impaired lung function: NHANES 2011–2012[J]. PLoS One, 2023, 18(2): e0281203. doi:10.1371/journal.pone.0281203
doi: 10.1371/journal.pone.0281203 |
| [18] | 肖志清, 吴雪, 邱蕊, 等. 儿童难治性肺炎支原体肺炎多因子预测模型构建与验证[J]. 实用医学杂志, 2025, 41(13): 2004-2010. |
| [19] |
LUO H, HE J, QIN L, et al. Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response[J]. Clin Exp Immunol, 2021, 203(1): 66-79. doi:10.1111/cei.13510
doi: 10.1111/cei.13510 |
| [20] |
MA C, HAO X, GAO L, et al. Extracellular Vesicles Released from Macrophages Infected with Mycoplasma pneumoniae Stimulate Proinflammatory Response via the TLR2-NF-κB/JNK Signaling Pathway[J]. Int J Mol Sci, 2023, 24(10): 8588. doi:10.3390/ijms24108588
doi: 10.3390/ijms24108588 |
| [21] |
WANG T, SUN H, LU Z, et al. The CARDS toxin of Mycoplasma pneumoniae induces a positive feedback loop of type 1 immune response[J]. Front Immunol, 2022, 13: 1054788. doi:10.3389/fimmu.2022.1054788
doi: 10.3389/fimmu.2022.1054788 |
| [22] |
YI X, JIA W, LI W, et al. Diagnostic value of cytokines in severe childhood Mycoplasma pneumoniae pneumonia combined with Adenovirus infection[J]. Ital J Pediatr, 2024, 50(1): 92. doi:10.1186/s13052-024-01661-6
doi: 10.1186/s13052-024-01661-6 |
| [23] |
ZHANG M. Improvement of IL-4, IL-6, IL-10, TNF-α and IFN-γ in children with mycoplasma pneumonia through the combination of video scenario-based breathing training and antibiotics[J]. Sleep Breath, 2025, 29(1): 76. doi:10.1007/s11325-025-03244-z
doi: 10.1007/s11325-025-03244-z |
| [24] |
ZHANG Z, DOU H, TU P, et al. Serum cytokine profiling reveals different immune response patterns during general and severe Mycoplasma pneumoniae pneumonia[J]. Front Immunol, 2022, 13: 1088725. doi:10.3389/fimmu.2022.1088725
doi: 10.3389/fimmu.2022.1088725 |
| [25] |
ISLAM M M, TAKEYAMA N. Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances[J]. Int J Mol Sci, 2023, 24(21): 15805. doi:10.3390/ijms242115805
doi: 10.3390/ijms242115805 |
| [26] |
DEMKOW U. Molecular Mechanisms of Neutrophil Extracellular Trap (NETs) Degradation[J]. Int J Mol Sci, 2023, 24(5): 4896. doi:10.3390/ijms24054896
doi: 10.3390/ijms24054896 |
| [27] |
MA Q, STEIGER S. Neutrophils and extracellular traps in crystal-associated diseases[J]. Trends Mol Med, 2024, 30(9): 809-823. doi:10.1016/j.molmed.2024.05.010
doi: 10.1016/j.molmed.2024.05.010 |
| [28] |
CHOWDHURY C S, KINSELLA R L, MCNEHLAN M E, et al. Type I IFN-mediated NET release promotes Mycobacterium tuberculosis replication and is associated with granuloma caseation[J]. Cell Host Microbe, 2024, 32(12): 2092-2111. doi:10.1016/j.chom.2024.11.008
doi: 10.1016/j.chom.2024.11.008 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

