The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (6): 773-780.doi: 10.3969/j.issn.1006-5725.2025.06.001
• Clinical Advances •
Ying. MAO
Received:
2024-12-03
Online:
2025-03-25
Published:
2025-03-31
CLC Number:
Ying. MAO. Research progress of polyglutamine extension in neurodegenerative diseases[J]. The Journal of Practical Medicine, 2025, 41(6): 773-780.
Tab.1
Effects of abnormal PolyQ extension on protein structure, function, and gene regulation"
PolyQ蛋白 | 影响类别 | 具体影响 | 参考文献 |
---|---|---|---|
mHTT | 蛋白质功能 | 招募转录因子CBP,影响其转录活性 | [ |
蛋白质降解机制 | 抑制蛋白酶体活性,导致细胞内泛素蛋白质降解系统障碍 | [ | |
Ataxin-1 | 蛋白质功能 | 与转录抑制因子CIC结合,改变其活性 | [ |
Ataxin-3 | 基因表达 | 与表观遗传调控因子相互作用,改变特定基因的DNA甲基化模式,影响基因表达 | [ |
Ataxin-7 | 基因表达 | 通过改变染色质结构影响基因转录 | [ |
AR | 蛋白质功能 | 募集转录因子CBP,影响其转录活性 | [ |
蛋白质降解机制 | 干扰自噬-溶酶体途径,阻碍细胞中错误折叠蛋白质的降解 | [ | |
Whi3 | 基因表达 | 调控mRNA的定位和运输,影响蛋白质产物 | [ |
Tab.2
Comparison between two models explaining the relationship between PolyQ extension and cytotoxicity"
特性 | 线性晶格模型 | 构象突现模型 |
---|---|---|
核心观点 | PolyQ在聚集前状态下保持随机卷曲结构,结合位点数量的增加导致更强的结合亲和力 | PolyQ的延伸过程中形成毒性β折叠构象,导致聚集中间体的毒性作用 |
关键机制 | 随机卷曲的无序结构暴露结合位点,诱导异常的蛋白-蛋白结合,形成聚集核,并通过链式反应促进淀粉样纤维的扩展 | 动态的毒性β折叠构象直接导致细胞毒性 |
细胞毒性来源 | PolyQ的延伸导致异常结合,与其他细胞蛋白或PolyQ重复序列发生错误相互作用,从而引发毒性 | 聚集中间体的异常相互作用破坏细胞功能,包括膜破裂和蛋白折叠机制紊乱 |
毒性形成条件 | PolyQ区域越长,结合位点越多,诱导更多异常相互作用,毒性越强 | PolyQ区域越长,动态构象的毒性中间体越多,毒性程度越高 |
潜在治疗靶点 | 阻断结合位点的异常相互作用或抑制聚集核形成,减少毒性 | 靶向毒性β折叠构象的形成和中间体的稳定性以减少细胞毒性 |
Tab.3
Effects of abnormal PolyQ extension on the nervous system"
异常PolyQ蛋白 | 影响功能 | 具体影响 | 参考文献 |
---|---|---|---|
mHTT | 钙稳态 | 与钙通道的异常相互作用导致神经元细胞内钙超载,触发一系列的信号级联反应,最终导致细胞凋亡 | [ |
氧化还原平衡 | 损害线粒体功能,增加活性氧的产生,导致神经细胞的氧化损伤 | [ | |
Ataxin-1 | 物质转运 | 影响浦肯野细胞中的核转运过程 | [ |
Ataxin-2 | 突触功能 | 导致小鼠初级皮质神经元中神经突和突触的丢失 | [ |
Ataxin-3 | 细胞骨架 | 与肌动蛋白结合,破坏其正常的组织结构,导致感光细胞中肌动蛋白细胞骨架的大规模破坏 | [ |
Ataxin-7 | 突触功能和神经递质传递 | 损伤视网膜和小脑的突触功能和神经递质传递 | [ |
α1ACT | 突触生长 | 带有扩增polyQ束的α1ACT缺乏转录因子功能和神经突生长特性,导致转基因小鼠共济失调和小脑萎缩 | [ |
TBP | 炎症反应 | 激活星形胶质细胞,导致这些细胞分泌大量促炎性细胞因子。这些炎症反应被认为与神经退行性疾病的进展密切相关 | [ |
Tab.4
Statistics on pathogenic gene mutations in PolyQ diseases"
疾病 | 致病基因 | 健康CAG重复次数 | 致病CAG重复次数 | 发病率 | 病变神经区域 |
---|---|---|---|---|---|
HD | HTT | < 36 | ≥ 36 | 在欧美和澳大利亚5 ~ 10例/10万人,而在亚洲和非洲~0.5例/10万人 | 纹状体、小脑、皮层和海马 |
SBMA | AR | 9 ~ 34 | > 47 | 1 ~ 2例/10万人 | 脊髓、延髓 |
DRPLA | ATN1 | 6 ~ 35 | 48 ~ 93 | 在日本最为常见(2 ~ 7例/100万人),尚无全球患病率的准确报告 | 小脑、基底节、脑干 |
SCA1 | ATXN1 | 6 ~ 44 | 39 ~ 83 | SCA的整体患病率2 ~ 3例/10万人,在某些人群中可能高达5 ~ 7例。其中最常见的是SCA3,其次是SCA2和SCA1。患病率的差异与创始人效应密切相关 | 小脑、桥脑、延髓以及脊髓 |
SCA2 | ATXN2 | ≤ 31 | ≥ 33 | 小脑、脑干、皮层、基底节、脊髓和周围神经 | |
SCA3 | ATXN3 | 12 ~ 44 | 53 ~ 87 | 小脑、脑干、脊髓、基底节 | |
SCA6 | CACNA1A | 4 ~ 18 | 20 ~ 33 | 小脑(以小脑皮质为主) | |
SCA7 | ATXN7 | 4 ~ 36 | 37 ~ 460 | 小脑、视网膜、大脑皮质、脑干 | |
SCA17 | TBP | 25 ~ 40 | 41 ~ 66 | 小脑、大脑皮质、基底节 |
1 |
LIEBERMAN A P, SHAKKOTTAI V G, ALBIN R L. Polyglutamine Repeats in Neurodegenerative Diseases [J]. Annu Rev Pathol, 2019, 14: 1-27. doi:10.1146/annurev-pathmechdis-012418-012857
doi: 10.1146/annurev-pathmechdis-012418-012857 |
2 |
ESTEVAM B, MATOS C A, NOBREGA C. PolyQ Database-an integrated database on polyglutamine diseases [J]. Database (Oxford), 2023, 2023:baad060. doi:10.1093/database/baad060
doi: 10.1093/database/baad060 |
3 |
MINAKAWA E N, NAGAI Y. Protein Aggregation Inhibitors as Disease-Modifying Therapies for Polyglutamine Diseases [J]. Front Neurosci, 2021, 15: 621996. doi:10.3389/fnins.2021.621996
doi: 10.3389/fnins.2021.621996 |
4 |
CANDELISE N, SCARICAMAZZA S, SALVATORI I, et al. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications [J]. Int J Mol Sci, 2021, 22(11):6016. doi:10.3390/ijms22116016
doi: 10.3390/ijms22116016 |
5 | 张祥乐, 胡红雨. 多聚谷氨酰胺延伸蛋白募集细胞内转录因子及对基因转录调控的影响 [J]. 生物化学与生物物理进展, 2023, 50(5): 1159-1161. |
6 |
ATANESYAN L, GUNTHER V, DICHTL B, et al. Polyglutamine tracts as modulators of transcriptional activation from yeast to mammals [J]. Biol Chem, 2012, 393(1/2): 63-70. doi:10.1515/bc-2011-252
doi: 10.1515/bc-2011-252 |
7 |
STEFFAN J S, KAZANTSEV A, SPASIC-BOSKOVIC O, et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription [J]. Proc Natl Acad Sci U S A, 2000, 97(12): 6763-6768. doi:10.1073/pnas.100110097
doi: 10.1073/pnas.100110097 |
8 |
LAM Y C, BOWMAN A B, JAFAR-NEJAD P, et al. ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology [J]. Cell, 2006, 127(7): 1335-1347. doi:10.1016/j.cell.2006.11.038
doi: 10.1016/j.cell.2006.11.038 |
9 |
MCCAMPBELL A, TAYLOR J P, TAYE A A, et al. CREB-binding protein sequestration by expanded polyglutamine [J]. Hum Mol Genet, 2000, 9(14): 2197-2202. doi:10.1093/hmg/9.14.2197
doi: 10.1093/hmg/9.14.2197 |
10 |
BENCE N F, SAMPAT R M, KOPITO R R. Impairment of the ubiquitin-proteasome system by protein aggregation [J]. Science, 2001, 292(5521): 1552-1555. doi:10.1126/science.292.5521.1552
doi: 10.1126/science.292.5521.1552 |
11 |
CORTES C J, MIRANDA H C, FRANKOWSKI H, et al. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA [J]. Nat Neurosci, 2014, 17(9): 1180-1189. doi:10.1038/nn.3787
doi: 10.1038/nn.3787 |
12 |
DING D, WANG C, CHEN Z, et al. Polyglutamine-expanded ataxin3 alter specific gene expressions through changing DNA methylation status in SCA3/MJD [J]. Aging (Albany NY), 2020, 13(3): 3680-3698. doi:10.18632/aging.202331
doi: 10.18632/aging.202331 |
13 |
HELMLINGER D, HARDY S, ABOU-SLEYMANE G, et al. Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction [J]. PLoS Biol, 2006, 4(3): e67. doi:10.1371/journal.pbio.0040067
doi: 10.1371/journal.pbio.0040067 |
14 |
LEE C, OCCHIPINTI P, GLADFELTER A S. PolyQ-dependent RNA-protein assemblies control symmetry breaking [J]. J Cell Biol, 2015, 208(5): 533-544. doi:10.1083/jcb.201407105
doi: 10.1083/jcb.201407105 |
15 |
BENNETT M J, HUEY-TUBMAN K E, HERR A B, et al. A linear lattice model for polyglutamine in CAG-expansion diseases [J]. Proc Natl Acad Sci U S A, 2002, 99(18): 11634-11639. doi:10.1073/pnas.182393899
doi: 10.1073/pnas.182393899 |
16 |
NAGAI Y, INUI T, POPIEL H A, et al. A toxic monomeric conformer of the polyglutamine protein [J]. Nat Struct Mol Biol, 2007, 14(4): 332-340. doi:10.1038/nsmb1215
doi: 10.1038/nsmb1215 |
17 |
PENG S I, LEONG L I, SUN J K, et al. A peptide inhibitor that rescues polyglutamine-induced synaptic defects and cell death through suppressing RNA and protein toxicities [J]. Mol Ther Nucleic Acids, 2022, 29: 102-115. doi:10.1016/j.omtn.2022.06.004
doi: 10.1016/j.omtn.2022.06.004 |
18 |
FURRER S A, WALDHERR S M, MOHANACHANDRAN M S, et al. Reduction of mutant ataxin-7 expression restores motor function and prevents cerebellar synaptic reorganization in a conditional mouse model of SCA7 [J]. Hum Mol Genet, 2013, 22(5): 890-903. doi:10.1093/hmg/dds495
doi: 10.1093/hmg/dds495 |
19 |
DU X, WANG J, ZHU H, et al. Second cistron in CACNA1A gene encodes a transcription factor mediating cerebellar development and SCA6 [J]. Cell, 2013, 154(1): 118-133. doi:10.1016/j.cell.2013.05.059
doi: 10.1016/j.cell.2013.05.059 |
20 |
VU A, HUMPHREY T, VOGEL S, et al. Polyglutamine repeat proteins disrupt actin structure in Drosophila photoreceptors [J]. Mol Cell Neurosci, 2018, 93: 10-17. doi:10.1016/j.mcn.2018.08.005
doi: 10.1016/j.mcn.2018.08.005 |
21 | 郭成玉, 罗果. 钙稳态在神经退行性疾病中的研究进展 [J]. 实用医学杂志, 2020, 36(2): 263-267. |
22 |
OLIVEIRA J M, JEKABSONS M B, CHEN S, et al. Mitochondrial dysfunction in Huntington's disease: The bioenergetics of isolated and in situ mitochondria from transgenic mice [J]. J Neurochem, 2007, 101(1): 241-249. doi:10.1111/j.1471-4159.2006.04361.x
doi: 10.1111/j.1471-4159.2006.04361.x |
23 |
YANG Y, YANG S, GUO J, et al. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17 [J]. J Neurosci, 2017, 37(38): 9101-9115. doi:10.1523/jneurosci.0111-17.2017
doi: 10.1523/jneurosci.0111-17.2017 |
24 |
ZHANG S, WILLIAMSON N A, DUVICK L, et al. The ataxin-1 interactome reveals direct connection with multiple disrupted nuclear transport pathways [J]. Nat Commun, 2020, 11(1): 3343. doi:10.1038/s41467-020-17145-0
doi: 10.1038/s41467-020-17145-0 |
25 |
WALKER F O. Huntington's disease [J]. Lancet, 2007, 369(9557): 218-228. doi:10.1016/s0140-6736(07)60111-1
doi: 10.1016/s0140-6736(07)60111-1 |
26 |
TONG H, YANG T, XU S, et al. Huntington's Disease: Complex Pathogenesis and Therapeutic Strategies [J]. Int J Mol Sci, 2024, 25(7):3845. doi:10.3390/ijms25073845
doi: 10.3390/ijms25073845 |
27 |
AVINER R, LEE T T, MASTO V B, et al. Polyglutamine-mediated ribotoxicity disrupts proteostasis and stress responses in Huntington's disease [J]. Nat Cell Biol, 2024, 26(6): 892-902. doi:10.1038/s41556-024-01414-x
doi: 10.1038/s41556-024-01414-x |
28 |
BURTSCHER J, STRASSER B, PEPE G, et al. Brain-Periphery Interactions in Huntington's Disease: Mediators and Lifestyle Interventions [J]. Int J Mol Sci, 2024, 25(9):4696. doi:10.3390/ijms25094696
doi: 10.3390/ijms25094696 |
29 |
LIEBERMAN A P. Spinal and bulbar muscular atrophy [J]. Handb Clin Neurol, 2018, 148: 625-632. doi:10.1016/b978-0-444-64076-5.00040-5
doi: 10.1016/b978-0-444-64076-5.00040-5 |
30 |
PRADAT P F, BERNARD E, CORCIA P, et al. The French national protocol for Kennedy's disease (SBMA): Consensus diagnostic and management recommendations [J]. Orphanet J Rare Dis, 2020, 15(1): 90. doi:10.1186/s13023-020-01366-z
doi: 10.1186/s13023-020-01366-z |
31 |
ARNOLD F J, PLUCIENNIK A, MERRY D E. Impaired Nuclear Export of Polyglutamine-Expanded Androgen Receptor in Spinal and Bulbar Muscular Atrophy [J]. Sci Rep, 2019, 9(1): 119. doi:10.1038/s41598-018-36784-4
doi: 10.1038/s41598-018-36784-4 |
32 |
TSUJI S, ONODERA O, GOTO J, et al. Sporadic ataxias in Japan-a population-based epidemiological study [J]. Cerebellum, 2008, 7(2): 189-197. doi:10.1007/s12311-008-0028-x
doi: 10.1007/s12311-008-0028-x |
33 |
TSUJI S. Dentatorubral-pallidoluysian atrophy [J]. Handb Clin Neurol, 2012, 103: 587-594. doi:10.1016/b978-0-444-51892-7.00041-3
doi: 10.1016/b978-0-444-51892-7.00041-3 |
34 | PRADES S P, MELO DE GUSMAO C M, GRIMALDI S M, et al. Drpla [M]//ADAM M P, FELDMAN J, MIRZAA G M, et al. GeneReviews® . Seattle (WA): University of Washington,1993. |
35 |
PUTKA A F, MATO J P, MCLOUGHLIN H S. Myelinating Glia: Potential Therapeutic Targets in Polyglutamine Spinocerebellar Ataxias [J]. Cells, 2023, 12(4):601. doi:10.3390/cells12040601
doi: 10.3390/cells12040601 |
36 |
ORR H T, CHUNG M Y, BANFI S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1 [J]. Nat Genet, 1993, 4(3): 221-226. doi:10.1038/ng0793-221
doi: 10.1038/ng0793-221 |
37 |
ORR H T. SCA1-phosphorylation, a regulator of Ataxin-1 function and pathogenesis [J]. Prog Neurobiol, 2012, 99(3): 179-185. doi:10.1016/j.pneurobio.2012.04.003
doi: 10.1016/j.pneurobio.2012.04.003 |
38 |
LIM J, CRESPO-BARRETO J, JAFAR-NEJAD P, et al. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1 [J]. Nature, 2008, 452(7188): 713-718. doi:10.1038/nature06731
doi: 10.1038/nature06731 |
39 |
NIEWIADOMSKA-CIMICKA A, HACHE A, TROTTIER Y. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion [J]. Front Neurosci, 2020, 14: 571. doi:10.3389/fnins.2020.00571
doi: 10.3389/fnins.2020.00571 |
40 |
MENON R P, NETHISINGHE S, FAGGIANO S, et al. The role of interruptions in polyQ in the pathology of SCA1 [J]. PLoS Genet, 2013, 9(7): e1003648. doi:10.1371/journal.pgen.1003648
doi: 10.1371/journal.pgen.1003648 |
41 |
VELAZQUEZ-PEREZ L, RODRIGUEZ-LABRADA R, GARCIA-RODRIGUEZ J C, et al. A comprehensive review of spinocerebellar ataxia type 2 in Cuba [J]. Cerebellum, 2011, 10(2): 184-198. doi:10.1007/s12311-011-0265-2
doi: 10.1007/s12311-011-0265-2 |
42 |
PULST S M. Spinocerebellar Ataxia Type 2 [M]//ADAM M P, FELDMAN J, MIRZAA G M, et al. GeneReviews® . Seattle (WA): University of Washington,1993. doi:10.1038/ng0993-8c
doi: 10.1038/ng0993-8c |
43 |
KLOCKGETHER T, MARIOTTI C, PAULSON H L. Spinocerebellar ataxia [J]. Nat Rev Dis Primers, 2019, 5(1): 24. doi:10.1038/s41572-019-0074-3
doi: 10.1038/s41572-019-0074-3 |
44 | PAULSON H, SHAKKOTTAI V. Spinocerebellar Ataxia Type 3 [M]//ADAM M P, FELDMAN J, MIRZAA G M, et al. GeneReviews® . Seattle (WA): University of Washington,1993. |
45 |
JAZUREK-CIESIOLKA M, CIESIOLKA A, KOMUR A A, et al. RAN Translation of the Expanded CAG Repeats in the SCA3 Disease Context [J]. J Mol Biol, 2020, 432(24): 166699. doi:10.1016/j.jmb.2020.10.033
doi: 10.1016/j.jmb.2020.10.033 |
46 |
BICHELMEIER U, SCHMIDT T, HUBENER J, et al. Nuclear localization of ataxin-3 is required for the manifestation of symptoms in SCA3: In vivo evidence [J]. J Neurosci, 2007, 27(28): 7418-7428. doi:10.1523/jneurosci.4540-06.2007
doi: 10.1523/jneurosci.4540-06.2007 |
47 |
ISHIKAWA K, OWADA K, ISHIDA K, et al. Cytoplasmic and nuclear polyglutamine aggregates in SCA6 Purkinje cells [J]. Neurology, 2001, 56(12): 1753-1756. doi:10.1212/wnl.56.12.1753
doi: 10.1212/wnl.56.12.1753 |
48 |
WANG D, HONDA S, SHIN M K, et al. Subcellular localization and ER-mediated cytotoxic function of alpha1A and alpha1ACT in spinocerebellar ataxia type 6 [J]. Biochem Biophys Res Commun, 2024, 695: 149481. doi:10.1016/j.bbrc.2024.149481
doi: 10.1016/j.bbrc.2024.149481 |
49 |
MICHALIK A, MARTIN J J, VAN BROECKHOVEN C. Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy [J]. Eur J Hum Genet, 2004, 12(1): 2-15. doi:10.1038/sj.ejhg.5201108
doi: 10.1038/sj.ejhg.5201108 |
50 |
GOSWAMI R, BELLO A I, BEAN J, et al. The Molecular Basis of Spinocerebellar Ataxia Type 7 [J]. Front Neurosci, 2022, 16: 818757. doi:10.3389/fnins.2022.818757
doi: 10.3389/fnins.2022.818757 |
51 |
NIEWIADOMSKA-CIMICKA A, HACHE A, LE GRAS S, et al. Polyglutamine-expanded ATXN7 alters a specific epigenetic signature underlying photoreceptor identity gene expression in SCA7 mouse retinopathy [J]. J Biomed Sci, 2022, 29(1): 107. doi:10.1186/s12929-022-00892-1
doi: 10.1186/s12929-022-00892-1 |
52 |
WARD J M, STOYAS C A, SWITONSKI P M, et al. Metabolic and Organelle Morphology Defects in Mice and Human Patients Define Spinocerebellar Ataxia Type 7 as a Mitochondrial Disease [J]. Cell Rep, 2019, 26(5): 1189-1202.e6. doi:10.1016/j.celrep.2019.01.028
doi: 10.1016/j.celrep.2019.01.028 |
53 |
MAGRI S, NANETTI L, GELLERA C, et al. Digenic inheritance of STUB1 variants and TBP polyglutamine expansions explains the incomplete penetrance of SCA17 and SCA48 [J]. Genet Med, 2022, 24(1): 29-40. doi:10.1016/j.gim.2021.08.003
doi: 10.1016/j.gim.2021.08.003 |
54 |
TOYOSHIMA Y, TAKAHASHI H. Spinocerebellar Ataxia Type 17 (SCA17) [J]. Adv Exp Med Biol, 2018, 1049: 219-231. doi:10.1007/978-3-319-71779-1_10
doi: 10.1007/978-3-319-71779-1_10 |
55 |
YANG S, LI X J, LI S. Molecular mechanisms underlying Spinocerebellar Ataxia 17 (SCA17) pathogenesis [J]. Rare Dis, 2016, 4(1): e1223580. doi:10.1080/21675511.2016.1223580
doi: 10.1080/21675511.2016.1223580 |
56 | 李静, 谢家丽, 李金玲,等. 穿越血脑屏障的纳米载体应用于神经退行性疾病干预治疗的研究进展 [J]. 实用医学杂志, 2019, 35(19): 2981-2986. |
57 | 马志, 赵慧慧, 罗茂涛,等. 肯尼迪病的发病机制和药物治疗研究进展 [J]. 中国临床神经科学, 2022, 30(3): 350-356. |
58 |
ARNOLD F J, MERRY D E. Molecular Mechanisms and Therapeutics for SBMA/Kennedy's Disease [J]. Neurotherapeutics, 2019, 16(4): 928-947. doi:10.1007/s13311-019-00790-9
doi: 10.1007/s13311-019-00790-9 |
59 |
PRAKASAM R, BONADIMAN A, ANDREOTTI R, et al. LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice [J]. Nat Commun, 2023, 14(1): 603. doi:10.1038/s41467-023-36186-9
doi: 10.1038/s41467-023-36186-9 |
60 |
WILTON-CLARK H, AL-AGHBARI A, YANG J, et al. Advancing Epidemiology and Genetic Approaches for the Treatment of Spinal and Bulbar Muscular Atrophy: Focus on Prevalence in the Indigenous Population of Western Canada [J]. Genes (Basel), 2023, 14(8):1634. doi:10.3390/genes14081634
doi: 10.3390/genes14081634 |
61 |
CHAUDHRY A, ANTHANASIOU-FRAGKOULI A, HOULDEN H. DRPLA: Understanding the natural history and developing biomarkers to accelerate therapeutic trials in a globally rare repeat expansion disorder [J]. J Neurol, 2021, 268(8): 3031-341. doi:10.1007/s00415-020-10218-6
doi: 10.1007/s00415-020-10218-6 |
62 | 孙迪, 胡兴越. 多聚谷氨酰胺脊髓小脑性共济失调的治疗研究进展 [J]. 全科医学临床与教育, 2021, 19(4): 351-354. |
63 |
KERKHOF L M C, VAN DE WARRENBURG B P C, VAN ROON-MOM W M C, et al. Therapeutic Strategies for Spinocerebellar Ataxia Type 1 [J]. Biomolecules, 2023, 13(5):788. doi:10.3390/biom13050788
doi: 10.3390/biom13050788 |
64 |
VAZQUEZ-MOJENA Y, LEON-ARCIA K, GONZALEZ-ZALDIVAR Y, et al. Gene Therapy for Polyglutamine Spinocerebellar Ataxias: Advances, Challenges, and Perspectives [J]. Mov Disord, 2021, 36(12): 2731-2744. doi:10.1002/mds.28819
doi: 10.1002/mds.28819 |
65 |
WU S, LIU K, CHENG W, et al. Growth hormone rescue cerebellar degeneration in SCA3 transgenic mice [J]. Biochem Biophys Res Commun, 2020, 529(2): 467-473. doi:10.1016/j.bbrc.2020.05.116
doi: 10.1016/j.bbrc.2020.05.116 |
66 |
DU X, WEI C, HEJAZI PASTOR D P, et al. alpha1ACT Is Essential for Survival and Early Cerebellar Programming in a Critical Neonatal Window [J]. Neuron, 2019, 102(4): 770-785. e7. doi:10.1016/j.neuron.2019.02.036
doi: 10.1016/j.neuron.2019.02.036 |
67 |
NIEWIADOMSKA-CIMICKA A, TROTTIER Y. Molecular Targets and Therapeutic Strategies in Spinocerebellar Ataxia Type 7 [J]. Neurotherapeutics, 2019, 16(4): 1074-1096. doi:10.1007/s13311-019-00778-5
doi: 10.1007/s13311-019-00778-5 |
68 |
LIU Q, PAN Y, LI X J, et al. Molecular Mechanisms and Therapeutics for SCA17 [J]. Neurotherapeutics, 2019, 16(4): 1097-1105. doi:10.1007/s13311-019-00762-z
doi: 10.1007/s13311-019-00762-z |
69 |
CHEN C M, CHEN W L, YANG S T, et al. New Synthetic 3-Benzoyl-5-Hydroxy-2H-Chromen-2-One (LM-031) Inhibits Polyglutamine Aggregation and Promotes Neurite Outgrowth through Enhancement of CREB, NRF2, and Reduction of AMPKalpha in SCA17 Cell Models [J]. Oxid Med Cell Longev, 2020, 2020: 3129497. doi:10.1155/2020/3129497
doi: 10.1155/2020/3129497 |
[1] | Sha LI,Chun′ai CUI. Progress in targeted research of forkhead box protein O3a in degenerative disease [J]. The Journal of Practical Medicine, 2024, 40(3): 423-427. |
[2] | Wei XU,Tao PENG,Mengliu. ZENG. A1 astrocytes: A new target for the treatment of neurodegenerative and neuroinflammatory diseases [J]. The Journal of Practical Medicine, 2023, 39(23): 3143-3148. |
[3] |
GUO Zhuang, ZHOU Lijun..
Dual role of astrocyte⁃microglia crosstalk in neuroinflammation [J]. The Journal of Practical Medicine, 2021, 37(18): 2432-2436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||