1 |
李德毅,杜鹃. 不确定性人工智能[M]. 北京:国防工业出版社, 2014.
|
2 |
中华医学会眼科学分会眼底病学组,中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年)——基于循证医学修订[J]. 中华眼底病杂志, 2023,39(2):99-124.
|
3 |
李建军. 糖尿病性视网膜病变及糖尿病性黄斑水肿新的国际临床分级标准[J]. 国际眼科纵览, 2004.DOI:10.3760/cma.j.issn.1673-5803.2004.01.022 .
doi: 10.3760/cma.j.issn.1673-5803.2004.01.022
|
4 |
PRATT H, COENEN F, BROADBENT D M, et al. Convolutional neural networks for diabetic retinopathy[J]. Procedia computer science, 2016, 90: 200-205. doi:10.1016/j.procs.2016.07.014
doi: 10.1016/j.procs.2016.07.014
|
5 |
ISLAM S M S, HASAN M M, ABDULLAH S. Deep learning based early detection and grading of diabetic retinopathy using retinal fundus images[EB/OL]. arXiv preprint arXiv:, 2018.
|
6 |
MANSOUR R F. Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy[J]. Biomed Eng lett, 2018, 8(1): 41-57. doi:10.1007/s13534-017-0047-y
doi: 10.1007/s13534-017-0047-y
|
7 |
HACISOFTAOGLU R E, KARAKAYA M, SALLAM A B. Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems[J]. Pattern recognition letters, 2020, 135: 409-417. doi:10.1016/j.patrec.2020.04.009
doi: 10.1016/j.patrec.2020.04.009
|
8 |
PANG H, WANG Z. Deep learning model for diabetic retinopathy detection[J]. J Software, 2017, 28(11): 3018-3029.
|
9 |
VANUSHA D, AMUTHA B. Classification of Diabetic Retinopathy using Capsules[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2021, 29(6): 835-854. doi:10.1142/s0218488521500379
doi: 10.1142/s0218488521500379
|
10 |
GADUPUDI K, JANAKIRAMAIAH B, KARUNA A, et al. Diabetic retinopathy detection and classification using capsule networks[J]. Complex & Intelligent Systems, 2023, 9(3): 2651-2664. doi:10.1007/s40747-021-00318-9
doi: 10.1007/s40747-021-00318-9
|
11 |
KUMAR G, CHATTERJEE S, CHATTOPADHYAY C. DRISTI: a hybrid deep neural network for diabetic retinopathy diagnosis[J]. Signal Image Video Process, 2021, 15(8): 1679-1686. doi:10.1007/s11760-021-01904-7
doi: 10.1007/s11760-021-01904-7
|
12 |
OULHADJ M, RIFFI J, KHODRISS C, et al. Diabetic retinopathy prediction based on wavelet decomposition and modified capsule network[J]. J Digit Imaging, 2023, 36(4): 1739-1751. doi:10.1007/s10278-023-00813-0
doi: 10.1007/s10278-023-00813-0
|
13 |
Emma D, Jared, Jorge, Will C, et al. Diabetic Retinopathy Detection[EB/OL]. , 2015. Kaggle.
|
14 |
FLEMING A D, GOATMAN K A, PHILIP S, et al. The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy[J]. Br J Ophthalmol, 2010, 94(6): 706-711. doi:10.1136/bjo.2008.149807
doi: 10.1136/bjo.2008.149807
|
15 |
JOHNSON A B, BURNS B. Hemorrhage[M]//StatPearls [Internet]. StatPearls Publishing, 2023. doi:10.1080/15424065.2024.2389325
doi: 10.1080/15424065.2024.2389325
|
16 |
SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[J]. Advances in neural information processing systems, 2017, 30.
|
17 |
WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Computer Vision ECCV 2018:Springer International Publishing, 2018: 3-19. doi:10.1007/978-3-030-01234-2_1
doi: 10.1007/978-3-030-01234-2_1
|
18 |
HOCHREITER S, SCHMIDHUBER J. Long Short-term Memory[J]. Neural Comput, 1997, 9(8):1735-80. doi:10.1162/neco.1997.9.8.1735
doi: 10.1162/neco.1997.9.8.1735
|
19 |
NGUYEN H P, RIBEIRO B. Advanced capsule networks via context awareness[C]//Artificial Neural Networks and Machine Learning-ICANN 2019: Theoretical Neural Computation: 28th International Conference on Artificial Neural Networks, Munich, Germany:Springer International Publishing, 2019: 166-177. doi:10.1007/978-3-030-30487-4_14
doi: 10.1007/978-3-030-30487-4_14
|
20 |
赵爽, 穆鸽, 赵文华, 等. 基于特征融合网络的糖尿病视网膜病变分类[J]. 激光与光电子学进展, 2023, 60(14): 300-306. doi:10.3788/LOP222415
doi: 10.3788/LOP222415
|
21 |
XIANG C, ZHANG L, TANG Y, et al. MS-CapsNet: A Novel Multi-Scale Capsule Network[J]. IEEE Signal Processing Letters, 2018, 25(12):1850-1854. doi:10.1109/lsp.2018.2873892
doi: 10.1109/lsp.2018.2873892
|