The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (19): 3119-3128.doi: 10.3969/j.issn.1006-5725.2025.19.024
• Reviews • Previous Articles Next Articles
Wujing QIU1,Huayao RUAN1,Ziwei YANG2,Yihua CHEN2,Yuhan LV2,Pei TANG3,Qianqian. ZHANG3()
Received:
2025-06-05
Online:
2025-10-10
Published:
2025-10-10
Contact:
Qianqian. ZHANG
E-mail:vinny223@126.com
CLC Number:
Wujing QIU,Huayao RUAN,Ziwei YANG,Yihua CHEN,Yuhan LV,Pei TANG,Qianqian. ZHANG. Research Progress on the Treatment of Corneal Neovascularization with Small Molecule Extracts of Traditional Chinese Medicine[J]. The Journal of Practical Medicine, 2025, 41(19): 3119-3128.
Tab 1
Potential therapeutic drugs for corneal angiogenesis"
类型 | 名称 | 来源 | 作用靶点 | 用药途径 | 实验模型 | 参考文献 |
---|---|---|---|---|---|---|
多酚 类黄 酮 | 表没食子儿茶没食子酸酯(EGCG) | 绿茶 (green tea) | VEGF/VEGFR、IKK/NF-κB | 眼药水 | 人脐静脉内皮细胞(HUVECs)、小鼠角膜碱灼烧模型 | [30-33, 35-36] |
山奈酚 (kaempferol, KA) | 银杏叶 (ginkgo biloba leaf) | VEGF/VEGFR、PI3K/Akt、 p38 MAPK/NF-κB | 眼药水 | 鸡胚绒毛尿囊膜(CAM)模型、小鼠角膜碱灼烧模型 | [37-40] | |
异甘草素 (isoliquiritigenin, ISL) | 甘草 (licorice) | COX-2、mPGES-1、CYP4A11、 Akt、p38 MAPK/MMP | 局部滴用/ 玻璃体注射 | 鸡胚绒毛尿囊膜(CAM)模型、小鼠角膜碱灼烧模型、人脐静脉内皮细胞(HUVECs) | [44-48] | |
多酚 非类 黄酮 | 姜黄素 (curcumin) | 姜黄 (curcuma longa) | VEGF/VEGFR、IKK/NF-κB、 PI3K/Akt/mTOR | 口服 | 人脐静脉内皮细胞(HUVECs)、糖尿病性视网膜病变模型(DR) | [50-54] |
大黄素 (emodin) | 草药 (herbalmedicine) | VEGF/PI3K/Akt、 Cyclin D1/E | 眼药水 | 小鼠角膜碱灼烧模型、小鼠基质胶栓塞模型、人脐静脉内皮细胞(HUVECs) | [57-60] | |
萜类 及其 衍生 物 | 甘草甜素 (glycyrrhizin, GL) | 甘草(licorice) | VEGF、HIF-1α、 NF-κB | 眼药水 | 小鼠角膜碱灼烧模型 | [ |
穿心莲内酯 (andrographolide, Andro) | 穿心莲 (andrographitis) | VEGF/Cyclin D1、 PFKFB3 | 腹腔注射 | 小鼠角膜碱灼烧模型、人脐静脉内皮细胞(HUVECs) | [68-70, 72-73] | |
生物 碱类 | 荜茇碱 (piperlongumine, PL) | 长胡椒 (piperlongum) | STAT-3、VEGF-A、VEGF-C、 MMP-2、MMP-9 | 腹腔注射 | 小鼠同种异体角膜移植模型、人脐静脉内皮细胞(HUVECs) | [74-77] |
蛇床子素 (osthole, OST) | 伞科植物蛇床(cnidium monnieri) | VEGF/NF-κB、ERK1/2、JNK、 p38 MAPK、PPARα | 眼药水 | 小鼠角膜碱灼烧模型、人脐静脉内皮细胞(HUVECs) | [80-86] | |
川芎嗪 (tetramethylpyrazine) | 川芎(ligusticum chuanxiong hort) | VEGF/Hippo/YAP、CXCR4、 NLRP1/NLRP3、TLR4/NF-κB、 BMP/Smad/Id-1 | 太阳穴局部注射 | [88-91] | ||
虫草素(cordycepin) | 蛹虫草(cordyceps militaris) | VEGF | 结膜下注射 | 小鼠角膜碱灼烧模型 | [94-96] | |
其他 | 密蒙花(flowers of buddleja officinalis) | 密蒙花(buddlea officinalis Maxim.) | VEGF | 灌胃 | 小鼠角膜碱灼烧模型 | [99-102] |
石斛酚(dendrophenol) | 石斛(dendrobium) | VEGF、MMP、HIF-1α、 AR/NF-κB/AKT | 结膜下注射 | 小鼠角膜碱灼烧模型、糖尿病性视网膜病变模型(DR) | [104-105] | |
藤黄酰胺 (gambogic amide) | 藤黄(gittifcrae) | VEGF、PI3K/AKT/mTOR、 PLCγ/Erk | 眼药水 | 人脐静脉内皮细胞(HUVECs)、鸡胚绒毛尿囊膜(CAM)模型、正常人脑微血管内皮细胞(NhECs)模型 | [ | |
瑞香素(DAP) | 达芙妮植物 (daphne species) | VEGF-A/VEGFR2、 STAT-3、Akt/ERK | 眼药水 | 人脐静脉内皮细胞(HUVECs)、小鼠角膜碱灼烧模型 | [111-113] |
[1] |
ROSHANDEL D, ESLANI M, BARADARAN-RAFII A, et al. Current and emerging therapies for corneal neovascularization[J]. Ocul Surf, 2018, 16(4): 398-414. doi:10.1016/j.jtos.2018.06.004
doi: 10.1016/j.jtos.2018.06.004 |
[2] |
WU D, CHAN K E, LIM B X H, et al. Management of corneal neovascularization: Current and emerging therapeutic approaches[J]. Indian J Ophthalmol, 2024, 72(): S354-S371. doi:10.4103/ijo.ijo_3043_23
doi: 10.4103/ijo.ijo_3043_23 |
[3] |
LOBO A M, AGELIDIS A M, SHUKLA D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation[J]. Ocul Surf, 2019, 17(1): 40-49. doi:10.1016/j.jtos.2018.10.002
doi: 10.1016/j.jtos.2018.10.002 |
[4] | WORLD HEALTH O. World report on vision [M]. Geneva: World Health Organization, 2019. |
[5] |
WANG L, CHEN N, CHENG H. Fisetin inhibits vascular endothelial growth factor‑induced angiogenesis in retinoblastoma cells[J]. Oncol Lett, 2020, 20(2): 1239-1244. doi:10.3892/ol.2020.11679
doi: 10.3892/ol.2020.11679 |
[6] |
ZHANG B, PEI W, CAI P, et al. Recent advances in Chinese patent medicines entering the international market[J]. Drug Discov Ther, 2022, 16(6): 258-272. doi:10.5582/ddt.2022.01115
doi: 10.5582/ddt.2022.01115 |
[7] |
YANG Z, LIU Y, SONG Z, et al. Chinese patent medicines for coronary microvascular disease: Clinical evidence and potential mechanisms[J]. Int J Med Sci, 2023, 20(8): 1024-1037. doi:10.7150/ijms.85789
doi: 10.7150/ijms.85789 |
[8] |
KUMAR A, YUN H, FUNDERBURGH M L, et al. Regenerative therapy for the Cornea[J]. Prog Retin Eye Res, 2022, 87: 101011. doi:10.1016/j.preteyeres.2021.101011
doi: 10.1016/j.preteyeres.2021.101011 |
[9] |
MADDULA S, DAVIS D K, MADDULA S, et al. Horizons in therapy for corneal angiogenesis[J]. Ophthalmology, 2011, 118(3): 591-599. doi:10.1016/j.ophtha.2011.01.041
doi: 10.1016/j.ophtha.2011.01.041 |
[10] | ABDELFATTAH N S, AMGAD M, ZAYED A A, et al. Clinical correlates of common corneal neovascular diseases: A literature review[J]. Int J Ophthalmol, 2015, 8(1): 182-193. |
[11] |
DRZYZGA L, SPIEWAK D, DORECKA M, et al. Available Therapeutic Options for Corneal Neovascularization: A Review[J]. Int J Mol Sci, 2024, 25(10): 5479. doi:10.3390/ijms25105479
doi: 10.3390/ijms25105479 |
[12] |
LIU S, ROMANO V, STEGER B, et al. Gene-based antiangiogenic applications for corneal neovascularization[J]. Surv Ophthalmol, 2018, 63(2): 193-213. doi:10.1016/j.survophthal.2017.10.006
doi: 10.1016/j.survophthal.2017.10.006 |
[13] |
DI ZAZZO A, GAUDENZI D, YIN J, et al. Corneal angiogenic privilege and its failure[J]. Exp Eye Res, 2021, 204: 108457. doi:10.1016/j.exer.2021.108457
doi: 10.1016/j.exer.2021.108457 |
[14] |
YU F, GONG D, YAN D, et al. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury[J]. Mol Ther, 2023, 31(8): 2454-2471. doi:10.1016/j.ymthe.2023.05.002
doi: 10.1016/j.ymthe.2023.05.002 |
[15] |
LE V N H, HOU Y, BOCK F, et al. Supplemental Anti Vegf A-Therapy Prevents Rebound Neovascularisation After Fine Needle Diathermy Treatment to Regress Pathological Corneal (LYMPH)Angiogenesis[J]. Sci Rep, 2020, 10(1): 3908. doi:10.1038/s41598-020-60705-z
doi: 10.1038/s41598-020-60705-z |
[16] |
ZHANG C, YIN Y, ZHAO J, et al. An Update on Novel Ocular Nanosystems with Possible Benefits in the Treatment of Corneal Neovascularization[J]. Int J Nanomedicine, 2022, 17: 4911-4931. doi:10.2147/ijn.s375570
doi: 10.2147/ijn.s375570 |
[17] |
DAVE R S, GOOSTREY T C, ZIOLKOWSKA M, et al. Ocular drug delivery to the anterior segment using nanocarriers: A mucoadhesive/mucopenetrative perspective[J]. J Control Release, 2021, 336: 71-88. doi:10.1016/j.jconrel.2021.06.011
doi: 10.1016/j.jconrel.2021.06.011 |
[18] |
ALVES M F M F C, FIGUEIREDO B Q D, COURY B F, et al. Evidências acerca do uso de glicocorticoides como terapêutica para sepse: Uma revisão integrativa de literatura[J]. Res Soc Dev, 2022, 11(2):e59211226196. doi:10.33448/rsd-v11i2.26196
doi: 10.33448/rsd-v11i2.26196 |
[19] |
KAUR G, SINGH N K. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases[J]. Int J Mol Sci, 2021, 23(1):386. doi:10.3390/ijms23010386
doi: 10.3390/ijms23010386 |
[20] |
SHIVALEELA B, SRUSHTI S C, SHREEDEVI S J, et al. Thalidomide-based inhibitor for TNF-α: Designing and Insilico evaluation[J]. Future J Pharm Sci, 2022, 8(1):5. doi:10.1186/s43094-021-00393-2
doi: 10.1186/s43094-021-00393-2 |
[21] |
DANG D H, RIAZ K M, KARAMICHOS D. Treatment of Non-Infectious Corneal Injury: Review of Diagnostic Agents, Therapeutic Medications, and Future Targets[J]. Drugs, 2022, 82(2): 145-167. doi:10.1007/s40265-021-01660-5
doi: 10.1007/s40265-021-01660-5 |
[22] |
CHEN L, WU H, REN C, et al. Inhibition of PDGF-BB reduces alkali-induced corneal neovascularization in mice[J]. Mol Med Rep, 2021, 23(4): 238. doi:10.3892/mmr.2021.11877
doi: 10.3892/mmr.2021.11877 |
[23] |
MOTALLEBI M, BHIA M, RAJANI H F, et al. Naringenin: A potential flavonoid phytochemical for cancer therapy[J]. Life Sci, 2022, 305: 120752. doi:10.1016/j.lfs.2022.120752
doi: 10.1016/j.lfs.2022.120752 |
[24] |
NAUMOVIĆ R. Forty years of cyclosporine in clinical practice[J]. Galen Med J, 2023, 2(8): 67-72. doi:10.5937/galmed2308067n
doi: 10.5937/galmed2308067n |
[25] |
LI J, HAN J, SHI Y, et al. Rapamycin inhibits corneal inflammatory response and neovascularization in a mouse model of corneal alkali burn[J]. Exp Eye Res, 2023, 233: 109539. doi:10.1016/j.exer.2023.109539
doi: 10.1016/j.exer.2023.109539 |
[26] |
PATRI G, ELAROUD I, BEARE N, et al. Improving clinical management of macular neovascularisation secondary to angioid streaks[J]. Eye, 2023, 38(5): 1017-1020. doi:10.1038/s41433-023-02797-1
doi: 10.1038/s41433-023-02797-1 |
[27] | 李淑霞, 王彬. 角膜新生血管治疗的研究新进展[J]. 临床眼科杂志, 2024, 32(2): 182-186. |
[28] |
CHAKRABORTY D, STEWART M W, SHETH J U, et al. Real-World Safety Outcomes of Intravitreal Ranibizumab Biosimilar (Razumab) Therapy for Chorioretinal Diseases[J]. Ophthalmol Ther, 2021, 10(2): 337-348. doi:10.1007/s40123-021-00345-2
doi: 10.1007/s40123-021-00345-2 |
[29] |
PLYUKHOVA A A, BUDZINSKAYA M V, STAROSTIN K M, et al. Comparative Safety of Bevacizumab, Ranibizumab, and Aflibercept for Treatment of Neovascular Age-Related Macular Degeneration (AMD): A Systematic Review and Network Meta-Analysis of Direct Comparative Studies[J]. J Clin Med, 2020, 9(5): 1522. doi:10.3390/jcm9051522
doi: 10.3390/jcm9051522 |
[30] |
ALAM M, ALI S, ASHRAF G M, et al. Epigallocatechin 3-gallate: From green tea to cancer therapeutics[J]. Food Chem, 2022, 379: 132135. doi:10.1016/j.foodchem.2022.132135
doi: 10.1016/j.foodchem.2022.132135 |
[31] |
CHEN CY, LIN YJ, WANG CCN, LAN YH, LAN SJ, SHEU MJ. Epigallocatechin-3-gallate inhibits tumor angiogenesis: Involvement of endoglin/Smad1 signaling in human umbilical vein endothelium cells[J]. Biomed Pharmacother, 2019,120: 109491. doi:10.1016/j.biopha.2019.109491
doi: 10.1016/j.biopha.2019.109491 |
[32] |
SHIMIZU M, SHIRAKAMI Y, SAKAI H, et al. (-)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells[J]. Chem Biol Interact, 2010, 185(3): 247-252. doi:10.1016/j.cbi.2010.03.036
doi: 10.1016/j.cbi.2010.03.036 |
[33] |
ZHANG Q, TANG X, LU Q, et al. Green tea extract and (-)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1α protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells[J]. Mol Cancer Ther, 2006, 5(5): 1227-1238. doi:10.1158/1535-7163.mct-05-0490
doi: 10.1158/1535-7163.mct-05-0490 |
[34] |
MIYOSHI N, TANABE H, SUZUKI T, et al. Applications of a Standardized Green Tea Catechin Preparation for Viral Warts and Human Papilloma Virus-Related and Unrelated Cancers[J]. Molecules, 2020, 25(11): 2588. doi:10.3390/molecules25112588
doi: 10.3390/molecules25112588 |
[35] |
XU J, TU Y, WANG Y, et al. Prodrug of epigallocatechin-3-gallate alleviates choroidal neovascularization via down-regulating HIF-1α/VEGF/VEGFR2 pathway and M1 type macrophage/microglia polarization[J]. Biomed Pharmacother, 2020, 121:109606. doi:10.1016/j.biopha.2019.109606
doi: 10.1016/j.biopha.2019.109606 |
[36] |
MIYAGAWA T, CHEN Z-Y, CHANG C-Y, et al. Topical Application of Hyaluronic Acid-RGD Peptide-Coated Gelatin/Epigallocatechin-3 Gallate (EGCG) Nanoparticles Inhibits Corneal Neovascularization via Inhibition of VEGF Production[J]. Pharmaceutics, 2020, 12(5): 404. doi:10.3390/pharmaceutics12050404
doi: 10.3390/pharmaceutics12050404 |
[37] |
HERRERA T E S, TELLO I P S, MUSTAFA M A, et al. Kaempferol: Unveiling its anti-inflammatory properties for therapeutic innovation[J]. Cytokine, 2025, 186: 156846. doi:10.1016/j.cyto.2024.156846
doi: 10.1016/j.cyto.2024.156846 |
[38] |
YU R, ZHONG J, ZHOU Q, et al. Kaempferol prevents angiogenesis of rat intestinal microvascular endothelial cells induced by LPS and TNF-α via inhibiting VEGF/Akt/p38 signaling pathways and maintaining gut-vascular barrier integrity[J]. Chem Biol Interact, 2022, 366: 110135. doi:10.1016/j.cbi.2022.110135
doi: 10.1016/j.cbi.2022.110135 |
[39] |
CHUANG Y L, FANG H W, AJITSARIA A, et al. Development of Kaempferol-Loaded Gelatin Nanoparticles for the Treatment of Corneal Neovascularization in Mice[J]. Pharmaceutics, 2019, 11(12): 635. doi:10.3390/pharmaceutics11120635
doi: 10.3390/pharmaceutics11120635 |
[40] |
SUBBARAJ G K, MASOODI T, YASAM S K, et al. Anti-angiogenic effect of nano-formulated water soluble kaempferol and combretastatin in an in vivo chick chorioallantoic membrane model and HUVEC cells[J]. Biomed Pharmacother, 2023, 163: 114820. doi:10.1016/j.biopha.2023.114820
doi: 10.1016/j.biopha.2023.114820 |
[41] |
HU W H, WANG H Y, XIA Y T, et al. Kaempferol, a Major Flavonoid in Ginkgo Folium, Potentiates Angiogenic Functions in Cultured Endothelial Cells by Binding to Vascular Endothelial Growth Factor[J]. Front Pharmacol, 2020, 11: 526. doi:10.3389/fphar.2020.00526
doi: 10.3389/fphar.2020.00526 |
[42] |
WANG L, ZHANG F, WANG J, et al. Machine learning prediction of dual and dose-response effects of flavone carbon and oxygen glycosides on acrylamide formation[J]. Front Nutr, 2022, 9: 1042590. doi:10.3389/fnut.2022.1042590
doi: 10.3389/fnut.2022.1042590 |
[43] |
HABET S. Narrow Therapeutic Index drugs: Clinical pharmacology perspective[J]. J Pharm Pharmacol, 2021, 73(10): 1285-1291. doi:10.1093/jpp/rgab102
doi: 10.1093/jpp/rgab102 |
[44] |
WANG C, CHEN Y, WANG Y, et al. Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1[J]. J Exp Clin Cancer Res, 2019, 38(1): 371. doi:10.1186/s13046-019-1361-2
doi: 10.1186/s13046-019-1361-2 |
[45] |
PIZZO S V, WANG Z, WANG N, et al. Dietary Compound Isoliquiritigenin Inhibits Breast Cancer Neoangiogenesis via VEGF/VEGFR-2 Signaling Pathway[J]. PLoS ONE, 2013, 8(7): e68566. doi:10.1371/journal.pone.0068566
doi: 10.1371/journal.pone.0068566 |
[46] |
KANG S W, CHOI J S, CHOI Y J, et al. Licorice isoliquiritigenin dampens angiogenic activity via inhibition of MAPK-responsive signaling pathways leading to induction of matrix metalloproteinases[J]. J Nutr Biochem, 2010, 21(1): 55-65. doi:10.1016/j.jnutbio.2008.10.004
doi: 10.1016/j.jnutbio.2008.10.004 |
[47] |
JHANJI V, LIU H, LAW K, et al. Isoliquiritigenin from licorice root suppressed neovascularisation in experimental ocular angiogenesis models[J]. Br J Ophthalmol, 2011, 95(9): 1309-1315. doi:10.1136/bjophthalmol-2011-300110
doi: 10.1136/bjophthalmol-2011-300110 |
[48] |
ZHANG R, YANG J, LUO Q, et al. Preparation and in vitro and in vivo evaluation of an isoliquiritigenin-loaded ophthalmic nanoemulsion for the treatment of corneal neovascularization[J]. Drug Deliv, 2022, 29(1): 2217-2233. doi:10.1080/10717544.2022.2096714
doi: 10.1080/10717544.2022.2096714 |
[49] |
WAHAB S, ANNADURAI S, ABULLAIS S S, et al. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology[J]. Plants, 2021, 10(12): 2751. doi:10.3390/plants10122751
doi: 10.3390/plants10122751 |
[50] |
SLIKA L, PATRA D. Traditional Uses, Therapeutic Effects and Recent Advances of Curcumin: A Mini-Review[J]. Mini-Rev Med Chem, 2020, 20(12): 1072-1082. doi:10.2174/1389557520666200414161316
doi: 10.2174/1389557520666200414161316 |
[51] |
LÓPEZ-MALO D, VILLARÓN-CASARES C A, ALARCÓN-JIMÉNEZ J, et al. Curcumin as a Therapeutic Option in Retinal Diseases[J]. Antioxidants, 2020, 9(1): 48. doi:10.3390/antiox9010048
doi: 10.3390/antiox9010048 |
[52] |
MOHANKUMAR K, FRANCIS A P, PAJANIRADJE S, et al. Synthetic curcumin analog: Inhibiting the invasion, angiogenesis, and metastasis in human laryngeal carcinoma cells via NF-kB pathway[J]. Mol Biol Rep, 2021, 48(8): 6065-6074. doi:10.1007/s11033-021-06610-8
doi: 10.1007/s11033-021-06610-8 |
[53] |
ZOI V, KYRITSIS A P, GALANI V, et al. The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway[J]. Cancers, 2024, 16(8): 1554. doi:10.3390/cancers16081554
doi: 10.3390/cancers16081554 |
[54] |
Y-F CHOU, LAN Y-H, J-H HSIAO, et al. Curcuminoids Inhibit Angiogenic Behaviors of Human Umbilical Vein Endothelial Cells via Endoglin/Smad1 Signaling[J]. Int J Mol Sci, 2022, 23(7): 3889. doi:10.3390/ijms23073889
doi: 10.3390/ijms23073889 |
[55] |
NAKAGAWA Y, MUKAI S, YAMADA S, et al. The Efficacy and Safety of Highly-Bioavailable Curcumin for Treating Knee Osteoarthritis: A 6-Month Open-Labeled Prospective Study[J]. Clin Med Insights Arthritis Musculoskelet Disord, 2020, 13: 1179544120948471. doi:10.1177/1179544120948471
doi: 10.1177/1179544120948471 |
[56] |
SUGIMOTO K, IKEYA K, BAMBA S, et al. Highly Bioavailable Curcumin Derivative Ameliorates Crohn′s Disease Symptoms: A Randomized, Double-Blind, Multicenter Study[J]. J Crohn Colitis, 2020, 14(12): 1693-1701. doi:10.1093/ecco-jcc/jjaa097
doi: 10.1093/ecco-jcc/jjaa097 |
[57] |
SEMWAL R B, SEMWAL D K, COMBRINCK S, et al. Emodin-A natural anthraquinone derivative with diverse pharmacological activities[J]. Phytochemistry, 2021, 190: 112854. doi:10.1016/j.phytochem.2021.112854
doi: 10.1016/j.phytochem.2021.112854 |
[58] |
DAI G, DING K, CAO Q, et al. Emodin suppresses growth and invasion of colorectal cancer cells by inhibiting VEGFR2[J]. Eur J Pharmacol, 2019, 859: 172525. doi:10.1016/j.ejphar.2019.172525
doi: 10.1016/j.ejphar.2019.172525 |
[59] |
KWAK H J, PARK M J, PARK C M, et al. Emodin inhibits vascular endothelial growth factor‐A‐induced angiogenesis by blocking receptor‐2 (KDR/Flk‐1) phosphorylation[J]. Int J Cancer, 2006, 118(11): 2711-2720. doi:10.1002/ijc.21641
doi: 10.1002/ijc.21641 |
[60] | LIU X Z L G S L F L I M L W L C M G. Emodin suppresses alkali burn-induced corneal inflammation and neovascularization by the vascular endothelial growth factor receptor 2 signaling pathway[J]. J Tradit Chin Med, 2024, 44(2): 268-276. |
[61] |
AI Z, LIU B, CHEN J, et al. Advances in nano drug delivery systems for enhanced efficacy of emodin in cancer therapy[J]. Int J Pharm X, 2025, 9: 100314. doi:10.1016/j.ijpx.2024.100314
doi: 10.1016/j.ijpx.2024.100314 |
[62] |
GUO Y, SONG J, LIU Y, et al. Study on the Hepatotoxicity of Emodin and Its Application in the Treatment of Liver Fibrosis[J]. Molecules, 2024, 29(21): 5122. doi:10.3390/molecules29215122
doi: 10.3390/molecules29215122 |
[63] |
XIE J, MA Y L, GUI M T, et al. Efficacy of Huoxue Qianyang Qutan Recipe on essential hypertension: A randomized, double-blind, placebo-controlled trial[J]. J Integr Med, 2024, 22(4): 484-492. doi:10.1016/j.joim.2024.05.002
doi: 10.1016/j.joim.2024.05.002 |
[64] |
JAIN R, HUSSEIN M A, PIERCE S, et al. Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives: Molecular insights[J]. Pharmacol Res, 2022, 178: 106138. doi:10.1016/j.phrs.2022.106138
doi: 10.1016/j.phrs.2022.106138 |
[65] |
YAO L, ZHANG J, JIN J, et al. An analysis of the efficacy and safety of compound glycyrrhizin injections in the treatment of drug-induced liver injury using a nationwide database[J]. Int J Clin Pharm, 2022, 44(3): 731-740. doi:10.1007/s11096-022-01402-x
doi: 10.1007/s11096-022-01402-x |
[66] |
LI C, WANG Z B. Clinical application of compound Glycyrrhizin tablets in the treatment of patients with Simplex Henoch-Schonlein Purpura and its effect on immune function[J]. Pak J Med Sci, 2021, 38(1): 271-275. doi:10.12669/pjms.38.1.4609
doi: 10.12669/pjms.38.1.4609 |
[67] |
WANG P, HAO P, CHEN X, et al. Targeting HMGB1-NFκb Axis and miR-21 by Glycyrrhizin: Role in Amelioration of Corneal Injury in a Mouse Model of Alkali Burn[J]. Front Pharmacol, 2022, 13: 841267. doi:10.3389/fphar.2022.841267
doi: 10.3389/fphar.2022.841267 |
[68] | 江楠, 马欣. 近20年穿心莲内酯药理作用研究进展[J]. 辽宁中医药大学学报, 2024, 26(12): 203-208. |
[69] |
SINGH A K, MANOHARAN S, VASUDEVAN K, et al. Anti-cell Proliferative and Anti-angiogenic Potential of Andrographolide During 7,12-Dimethylbenz(a)anthracene Induced Hamster Buccal Pouch Carcinogenesis[J]. Asian Pac J Cancer Prev, 2013, 14(10): 6001-6005. doi:10.7314/apjcp.2013.14.10.6001
doi: 10.7314/apjcp.2013.14.10.6001 |
[70] |
YAO H, WU Z, XU Y, et al. Andrographolide attenuates imbalance of gastric vascular homeostasis induced by ethanol through glycolysis pathway[J]. Sci Rep, 2019, 9(1): 4968. doi:10.1038/s41598-019-41417-5
doi: 10.1038/s41598-019-41417-5 |
[71] | 常静, 张瑞明, 张颖, 等. 穿心莲内酯滴丸治疗急性上呼吸道感染外感风热证多中心随机对照临床试验[J]. 中西医结合学报, 2008, 6(12): 1238-1245. |
[72] | 郭晓兰, 赵茂州, 林玉茵, 等. 穿心莲内酯抑制肿瘤细胞分泌物诱导的血管新生[J]. 中南大学学报(医学版), 2018, 43(8): 821-825. |
[73] | 段芳, 陈佳颖, 李香莉, 等. 穿心莲内酯对碱灼烧引起的小鼠角膜血管新生的作用[J]. 临床和实验医学杂志, 2017, 16(14): 1353-1356. |
[74] | PARAMA D, RANA V, GIRISA S, et al. The promising potential of piperlongumine as an emerging therapeutics for cancer[J]. Explor Target Anti-tumor Ther, 2021, 2(4): 323-354. |
[75] | UMAPATHY V R, DHANAVEL A, KESAVAN R, et al. Anticancer Potential of the Principal Constituent of Piper nigrum, Piperine: A Comprehensive Review[J]. Cureus, 2024, 16(2):e54425. |
[76] |
FAN X, QIU J, YUAN T, et al. Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammation[J]. Front Immunol, 2022, 13: 1090877. doi:10.3389/fimmu.2022.1090877
doi: 10.3389/fimmu.2022.1090877 |
[77] |
QIN J, LI H, WANG X, et al. Discovery of a novel piperlongumine analogue as a microtubule polymerization inhibitor with potent anti-angiogenic and anti-metastatic efficacy[J]. Eur J Med Chem, 2022, 243: 114738. doi:10.1016/j.ejmech.2022.114738
doi: 10.1016/j.ejmech.2022.114738 |
[78] |
LI H, WANG M, HUA Z, et al. Piperlongumine alleviates viral myocarditis by inhibiting pyroptosis through NF-κB pathway[J]. Phytomedicine, 2025, 140: 156606. doi:10.1016/j.phymed.2025.156606
doi: 10.1016/j.phymed.2025.156606 |
[79] |
THATIKONDA S, POOLADANDA V, SIGALAPALLI D K, et al. Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation[J]. Cell Death Dis, 2020, 11(1): 21. doi:10.1038/s41419-019-2212-y
doi: 10.1038/s41419-019-2212-y |
[80] |
SUN M, SUN M, ZHANG J. Osthole: An overview of its sources, biological activities, and modification development[J]. Med Chem Res, 2021, 30(10): 1767-1794. doi:10.1007/s00044-021-02775-w
doi: 10.1007/s00044-021-02775-w |
[81] | YAO F, ZHANG L, JIANG G, et al. Osthole attenuates angiogenesis in an orthotopic mouse model of hepatocellular carcinoma via the downregulation of nuclear factor‑κB and vascular endothelial growth factor[J]. Oncol Lett, 2018, 16(4): 4471-4479. |
[82] |
ZHANG Q Y, TAO S Y, LU C, et al. Osthole: A Traditional Chinese Medicine for Ocular Anti-Angiogenic Therapy[J]. Ophthalmic Res, 2020, 63(5): 483-490. doi:10.1159/000505976
doi: 10.1159/000505976 |
[83] |
YUE Y, LI Y-Q, FU S, et al. Osthole inhibits cell proliferation by regulating the TGF-β1/Smad/p38 signaling pathways in pulmonary arterial smooth muscle cells[J]. Biomed Pharmacother, 2020, 121: 109640. doi:10.1016/j.biopha.2019.109640
doi: 10.1016/j.biopha.2019.109640 |
[84] |
ZHAO X, XUE J, XIE M. Osthole inhibits oleic acid/lipopolysaccharide-induced lipid accumulation and inflammatory response through activating PPARα signaling pathway in cultured hepatocytes[J]. Exp Gerontol, 2019, 119: 7-13. doi:10.1016/j.exger.2019.01.014
doi: 10.1016/j.exger.2019.01.014 |
[85] |
SONG J, HAM J, SONG G, et al. Osthole Suppresses Cell Growth of Prostate Cancer by Disrupting Redox Homeostasis, Mitochondrial Function, and Regulation of tiRNAHisGTG[J]. Antioxidants, 2024, 13(6): 669. doi:10.3390/antiox13060669
doi: 10.3390/antiox13060669 |
[86] |
ZHANG Y, YANG J, JI Y, et al. Development of Osthole-Loaded Microemulsions as a Prospective Ocular Delivery System for the Treatment of Corneal Neovascularization: In Vitro and In Vivo Assessments[J]. Pharmaceuticals, 2023, 16(10): 1342. doi:10.3390/ph16101342
doi: 10.3390/ph16101342 |
[87] | 李芳芳, 张琪. 川芎嗪对血管内皮损伤的保护作用机制研究进展[J]. 中国医药导报, 2020, 17(8): 25-28. |
[88] |
LIN J, WANG Q, ZHOU S, et al. Tetramethylpyrazine: A review on its mechanisms and functions[J]. Biomed Pharmacother, 2022, 150: 113005. doi:10.1016/j.biopha.2022.113005
doi: 10.1016/j.biopha.2022.113005 |
[89] |
JIANG T, WANG C-Y, CHEN Y. Tetramethylpyrazine inhibits keratitis and neovascularization induced by corneal alkali burn by suppressing the TLR4/NF-κB pathway activation and NLRP1/NLRP3 inflammasomes in rats[J]. Exp Eye Res, 2023. doi:10.1016/j.exer.2023.109704
doi: 10.1016/j.exer.2023.109704 |
[90] |
JIA Y, WANG Z, ZANG A, et al. Tetramethylpyrazine inhibits tumor growth of lung cancer through disrupting angiogenesis via BMP/Smad/Id-1 signaling[J]. Int J Oncol, 2016, 48(5): 2079-2086. doi:10.3892/ijo.2016.3443
doi: 10.3892/ijo.2016.3443 |
[91] |
WU Y, XU Z, YANG Y, et al. Tetramethylpyrazine (TMP) ameliorates corneal neovascularization via regulating cell infiltration into cornea after alkali burn[J]. Biomed Pharmacother, 2019, 109: 1041-1051. doi:10.1016/j.biopha.2018.10.091
doi: 10.1016/j.biopha.2018.10.091 |
[92] | 赵美平, 张聪聪, 郑梦晓, 等. 川芎嗪注射液对慢性阻塞性肺疾病患者肺动脉高压的作用及其机制[C]. //2016浙江省生理科学会年会论文摘要. 温州医科大学病理生理学教研室; 温州医科大学附属第二医院, 2016: 29-30. |
[93] | 何佳起, 齐洪娜, 张建军, 等. 心型脂肪酸结合蛋白和可溶性CD14亚型在丹参川芎嗪治疗脓毒症心肌损伤中的变化[J]. 实用医学杂志, 2016, 32(23): 3924-3927. |
[94] | 林慧榕, 朱鹏立. 虫草素防治年龄相关性心血管病研究的进展[J]. 心血管康复医学杂志, 2021, 30(6): 704-707. |
[95] | 程文武, 江萍, 席祖莲, 等. 蛹虫草提取物抑制大鼠角膜新生血管的实验研究[J]. 眼科新进展, 2012, 32(5): 432-435. |
[96] | 程文武, 柳蔚, 江萍, 等. 虫草素对碱烧伤诱导大鼠角膜新生血管的抑制作用[J]. 贵州医科大学学报, 2017, 42(3): 308-312. |
[97] | 赵星月, 李倩, 刘文静, 等. 蛹虫草菌生物合成虫草素的研究进展[J]. 生物工程学报, 2020, 36(7): 1293-1304. |
[98] | 杨益广, 黄作喜. 蛹虫草人工培养研究进展[J]. 安徽农学通报, 2019, 25(14): 21-24. |
[99] | 秦聪聪, 杜沁圆, 展照双, 等. 密蒙花的本草考证[J]. 中国药房, 2022, 33(19): 2423-2427. |
[100] | 梁娜, 黄费炳, 邓玉群, 等. 密蒙花治疗眼干燥症的研究进展[J]. 湖南中医杂志, 2022, 38(11): 200-203. |
[101] | 刘军, 左志琴, 黄一涛, 等. 密蒙花对小鼠碱烧伤角膜新生血管的影响[J]. 江西中医药, 2016, 47(7): 38-39. |
[102] | 谢云峰, 丁玲, 苏思静, 等. 不同炮制方法对密蒙花有效成分及抗炎作用的影响[J]. 时珍国医国药, 2023, 34(5): 1126-1129. |
[103] | 俞越, 李春霞, 史春. 石斛提取物与糖尿病视网膜病变相关研究进展[J]. 中国中医眼科杂志, 2021, 31(3): 215-217+223. |
[104] | 范兆阳, 鲜文峰, 刘永喜, 等. 石斛酚通过NF-κB/PRL-3通路抑制骨肉瘤细胞增殖、迁移和侵袭[J]. 中国肿瘤生物治疗杂志, 2019, 26(10): 1095-1100. |
[105] | 朱吉凤, 孔超, 彭敏, 等. 石斛酚抑制内质网应激减轻大鼠角膜碱烧伤实验研究[J]. 陕西医学杂志, 2025, 54(5): 590-595+601. |
[106] | 蒋波, 田莎, 李涛, 等. 石斛酚抑制碱烧伤大鼠角膜新生血管的实验研究[J]. 中国实验动物学报, 2024, 32(7): 846-855. |
[107] | 刁红星, 易燕群, 戚辉, 等. 石斛酚与丁香酸联合抗白内障作用及其机制研究[C]. 广东省药学会. 2013年广东省药师周大会论文集, 2013: 289. |
[108] | 徐艳飞, 夏谦, 李康银, 等. 铁皮石斛中石斛多糖、石斛碱、石斛酚的联合提取[J]. 云南化工, 2022, 49(6): 30-32. |
[109] |
OBIANYO O, YE K. Novel small molecule activators of the Trk family of receptor tyrosine kinases[J]. Biochim Biophys Acta Proteins Proteom, 2013, 1834(10): 2213-2218. doi:10.1016/j.bbapap.2012.08.021
doi: 10.1016/j.bbapap.2012.08.021 |
[110] |
SUI T, QIU B, QU J, et al. Gambogic amide inhibits angiogenesis by suppressing VEGF/VEGFR2 in endothelial cells in a TrkA-independent manner[J]. Pharm Biol, 2021, 59(1): 1564-1573. doi:10.1080/13880209.2021.1998140
doi: 10.1080/13880209.2021.1998140 |
[111] |
JAVED M, SALEEM A, XAVERIA A, et al. Daphnetin: A bioactive natural coumarin with diverse therapeutic potentials[J]. Front Pharmacol, 2022, 13: 993562. doi:10.3389/fphar.2022.993562
doi: 10.3389/fphar.2022.993562 |
[112] |
XIE S, MA L, GUAN H, et al. Daphnetin suppresses experimental abdominal aortic aneurysms in mice via inhibition of aortic mural inflammation[J]. Exp Ther Med, 2020, 20(6): 1-1. doi:10.3892/etm.2020.9351
doi: 10.3892/etm.2020.9351 |
[113] |
YANG T, WANG X, GUO L, et al. Daphnetin inhibits corneal inflammation and neovascularization on a mouse model of corneal alkali burn[J]. Int Immunopharmacol, 2022, 103: 108434. doi:10.1016/j.intimp.2021.108434
doi: 10.1016/j.intimp.2021.108434 |
[114] |
MATTHAEI M, HRIBEK A, CLAHSEN T, et al. Fuchs Endothelial Corneal Dystrophy: Clinical, Genetic, Pathophysiologic, and Therapeutic Aspects[J]. Annu Rev Vis Sci, 2019, 5(1): 151-175. doi:10.1146/annurev-vision-091718-014852
doi: 10.1146/annurev-vision-091718-014852 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||