The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (18): 2953-2960.doi: 10.3969/j.issn.1006-5725.2025.18.024
• Reviews • Previous Articles
Mingyang YU,Jia LI,Xinzhe FENG,Jingjing BI,Cheng LI()
Received:
2025-07-01
Online:
2025-09-20
Published:
2025-09-25
Contact:
Cheng LI
E-mail:drlicheng@sina.com
CLC Number:
Mingyang YU,Jia LI,Xinzhe FENG,Jingjing BI,Cheng LI. Research progress on Th17 cell differentiation regulation mechanisms and therapeutic targets in ankylosing spondylitis[J]. The Journal of Practical Medicine, 2025, 41(18): 2953-2960.
[1] |
SIEPER J, PODDUBNYY D. Inflammation, new bone formation and treatment options in axial spondyloarthritis [J]. Ann Rheum Dis, 2014, 73(8): 1439-1441. doi:10.1136/annrheumdis-2014-205464
doi: 10.1136/annrheumdis-2014-205464 |
[2] |
YUANYUANXU, QIPENG, QINGQINGMA, et al. scRNA + TCR-seq revealed the dual TCR pTh17 and Treg T cells involvement in autoimmune response in ankylosing spondylitis [J]. Int Immunopharmacol, 2024, 135: 112279. doi:10.1016/j.intimp.2024.112279
doi: 10.1016/j.intimp.2024.112279 |
[3] |
VORUGANTI A, BOWNESS P. New developments in our understanding of ankylosing spondylitis pathogenesis [J]. Immunology, 2020, 161(2): 94-102. doi:10.1111/imm.13242
doi: 10.1111/imm.13242 |
[4] |
WON E J, KIM H J, LEE Y J, et al. CCL20 inhibition for treating inflammation in ankylosing spondylitis [J]. Rheumatology (Oxford), 2023, 62(12): 4000-4005. doi:10.1093/rheumatology/kead268
doi: 10.1093/rheumatology/kead268 |
[5] |
WANG J, ZHAO X, WAN Y Y. Intricacies of TGF-β signaling in Treg and Th17 cell biology [J]. Cell Mol Immunol, 2023, 20(9): 1002-1022. doi:10.1038/s41423-023-01036-7
doi: 10.1038/s41423-023-01036-7 |
[6] |
ZHANG W, LIU X, ZHU Y, et al. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease [J]. Eur J Immunol, 2021, 51(9): 2137-2150. doi:10.1002/eji.202048794
doi: 10.1002/eji.202048794 |
[7] |
GAGLIANI N, AMEZCUA VESELY M C, ISEPPON A, et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation [J]. Nature, 2015, 523(7559): 221-225. doi:10.1038/nature14452
doi: 10.1038/nature14452 |
[8] |
BURKETT P R, MEYER ZU HORSTE G, KUCHROO V K. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity [J]. J Clin Invest, 2015, 125(6): 2211-2219. doi:10.1172/jci78085
doi: 10.1172/jci78085 |
[9] |
KERSCHBAUMER A, SMOLEN J S, FERREIRA R J O, et al. Efficacy and safety of pharmacological treatment of psoriatic arthritis: A systematic literature research informing the 2023 update of the EULAR recommendations for the management of psoriatic arthritis [J]. Ann Rheum Dis, 2024, 83(6): 760-774. doi:10.1136/ard-2024-225534
doi: 10.1136/ard-2024-225534 |
[10] |
PENNINGER P, BREZOVEC H, TSYMALA I, et al. HDAC1 fine-tunes Th17 polarization in vivo to restrain tissue damage in fungal infections [J]. Cell Rep, 2024, 43(12): 114993. doi:10.1016/j.celrep.2024.114993
doi: 10.1016/j.celrep.2024.114993 |
[11] |
GEGE C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases-where are we presently? [J]. Expert Opin Drug Discov, 2021, 16(12): 1517-1535. doi:10.1080/17460441.2021.1948833
doi: 10.1080/17460441.2021.1948833 |
[12] |
HU Y, LI H, WANG X, et al. Activation of the aryl hydrocarbon receptor alleviates Sjögren's syndrome by promoting Bregs differentiation [J]. Int Immunopharmacol, 2025, 158: 114812. doi:10.1016/j.intimp.2025.114812
doi: 10.1016/j.intimp.2025.114812 |
[13] |
CHEN W, WANG P, XIE Y, et al. Histone lactylation-augmented IRF4 is implicated in arsenite-induced liver fibrosis via modulating Th17 cell differentiation [J]. Chem Biol Interact, 2025, 414: 111507. doi:10.1016/j.cbi.2025.111507
doi: 10.1016/j.cbi.2025.111507 |
[14] |
XIE Y, CHAI M, XING Y, et al. miRNA let-7f-5p-encapsulated labial gland MSC-derived EVs ameliorate experimental Sjögren's syndrome by suppressing Th17 cells via targeting RORC/IL-17A signaling axis [J]. J Nanobiotechnology, 2025, 23(1): 228. doi:10.1186/s12951-025-03308-y
doi: 10.1186/s12951-025-03308-y |
[15] |
OHARA D, TAKEUCHI Y, HIROTA K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells[J]. Cell Mol Immunol, 2024, 21(11): 1183-1200. doi:10.1038/s41423-024-01218-x
doi: 10.1038/s41423-024-01218-x |
[16] |
NIU D, YUE S Y, WANG X, et al. High glucose intake exacerbates experimental autoimmune prostatitis through mitochondrial reactive oxygen species-dependent TGF-β activation-mediated Th17 differentiation [J]. Int Immunopharmacol, 2024, 130: 111682. doi:10.1016/j.intimp.2024.111682
doi: 10.1016/j.intimp.2024.111682 |
[17] |
WILCK N, MATUS M G, KEARNEY S M, et al. Salt-responsive gut commensal modulates TH17 axis and disease [J]. Nature, 2017, 551(7682): 585-589. doi:10.1038/nature24628
doi: 10.1038/nature24628 |
[18] |
DAMASCENO L E A, PRADO D S, VERAS F P, et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation [J]. J Exp Med, 2020, 217(10): e20190613. doi:10.1084/jem.20190613
doi: 10.1084/jem.20190613 |
[19] |
LI Y, HE M, XU J, et al. Hypoxia Exposure Promotes Th17 Cell Differentiation Through Activin A-PKM2 Axis to Exacerbate Autoimmune and Autoinflammatory Diseases [J]. FASEB J, 2025, 39(12): e70696. doi:10.1096/fj.202500719r
doi: 10.1096/fj.202500719r |
[20] |
YANG K L, LEJEUNE A, CHANG G, et al. Microbial-derived antigens and metabolites in spondyloarthritis [J]. Semin Immunopathol, 2021, 43(2): 163-172. doi:10.1007/s00281-021-00844-1
doi: 10.1007/s00281-021-00844-1 |
[21] |
TAN T G, SEFIK E, GEVA-ZATORSKY N, et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice [J]. Proc Natl Acad Sci U S A, 2016, 113(50): E8141-E8150. doi:10.1073/pnas.1617460113
doi: 10.1073/pnas.1617460113 |
[22] |
CHEN Y, LIU W, XU X, et al. The Role of H3K27me3-Mediated Th17 Differentiation in Ankylosing Spondylitis [J]. Inflammation, 2024, 47(5): 1685-1698. doi:10.1007/s10753-024-02002-9
doi: 10.1007/s10753-024-02002-9 |
[23] |
SU Q Y, ZHENG J W, YANG J Y, et al. Levels of Peripheral Th17 Cells and Th17-Related Cytokines in Patients with Ankylosing Spondylitis: A Meta-analysis [J]. Adv Ther, 2022, 39(10): 4423-4439. doi:10.1007/s12325-022-02240-z
doi: 10.1007/s12325-022-02240-z |
[24] |
NAVID F, HOLT V, COLBERT R A. The enigmatic role of HLA-B*27 in spondyloarthritis pathogenesis [J]. Semin Immunopathol, 2021, 43(2): 235-243. doi:10.1007/s00281-021-00838-z
doi: 10.1007/s00281-021-00838-z |
[25] |
WEI Y, ZHANG S, SHAO F, et al. Ankylosing spondylitis: From pathogenesis to therapy [J]. Int Immunopharmacol, 2025, 145: 113709. doi:10.1016/j.intimp.2024.113709
doi: 10.1016/j.intimp.2024.113709 |
[26] |
WANG S, SONG R, WANG Z, et al. S100A8/A9 in Inflammation [J]. Front Immunol, 2018, 9: 1298. doi:10.3389/fimmu.2018.01298
doi: 10.3389/fimmu.2018.01298 |
[27] |
FELD J, CHANDRAN V, HAROON N, et al. Axial disease in psoriatic arthritis and ankylosing spondylitis: A critical comparison [J]. Nat Rev Rheumatol, 2018, 14(6): 363-371. doi:10.1038/s41584-018-0006-8
doi: 10.1038/s41584-018-0006-8 |
[28] |
LEI L, WEN Z, CAO M, et al. The emerging role of Piezo1 in the musculoskeletal system and disease [J]. Theranostics, 2024, 14(10): 3963-3983. doi:10.7150/thno.96959
doi: 10.7150/thno.96959 |
[29] |
YI K, JO S, SONG W, et al. Analysis of Single-Cell Transcriptome and Surface Protein Expression in Ankylosing Spondylitis Identifies OX40-Positive and Glucocorticoid-Induced Tumor Necrosis Factor Receptor-Positive Pathogenic Th17 Cells [J]. Arthritis Rheumatol, 2023, 75(7): 1176-1186. doi:10.1002/art.42476
doi: 10.1002/art.42476 |
[30] |
ALTINÖNDER İ, KAYA M, YENTÜR S P, et al. Thymic gene expression analysis reveals a potential link between HIF-1A and Th17/Treg imbalance in thymoma associated myasthenia gravis [J]. J Neuroinflammation, 2024, 21(1): 126. doi:10.1186/s12974-024-03095-7
doi: 10.1186/s12974-024-03095-7 |
[31] |
TANG Z, JIN L, YANG Y. The dual role of IL-17 in periodontitis regulating immunity and bone homeostasis [J]. Front Immunol, 2025, 16: 1578635. doi:10.3389/fimmu.2025.1578635
doi: 10.3389/fimmu.2025.1578635 |
[32] |
YANG X, YANG J, XING X, et al. Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction [J]. Arthritis Res Ther, 2014, 16(1): R4. doi:10.1186/ar4430
doi: 10.1186/ar4430 |
[33] | 姬原原, 包景泊, 赵旭, 等. 白介素17F促进大鼠成骨细胞增殖、矿化和Runx2、Osterix的表达 [J]. 山东大学学报(医学版), 2017, 55(8): 24-29. |
[34] |
CHEUNG K L, ZHAO L, SHARMA R, et al. Class IIa HDAC4 and HDAC7 cooperatively regulate gene transcription in Th17 cell differentiation [J]. Proc Natl Acad Sci U S A, 2024, 121(18): e2312111121. doi:10.1073/pnas.2312111121
doi: 10.1073/pnas.2312111121 |
[35] |
ZHU X, WANG P, ZHAN X, et al. USP1-regulated reciprocal differentiation of Th17 cells and Treg cells by deubiquitinating and stabilizing TAZ [J]. Cell Mol Immunol, 2023, 20(3): 252-263. doi:10.1038/s41423-022-00969-9
doi: 10.1038/s41423-022-00969-9 |
[36] | 张玉红, 单新洁, 周俊. miR-155通过SOCS1/STAT3途径调控类风湿性关节炎中炎症反应和Th17/Treg失衡 [J]. 实用医学杂志, 2024, 40(13): 1791-1796. |
[37] |
XU F, GUANGHAO C, LIANG Y, et al. Treg-promoted New Bone Formation Through Suppressing TH17 by Secreting Interleukin-10 in Ankylosing Spondylitis [J]. Spine (Phila Pa 1976), 2019, 44(23): E1349-E1355. doi:10.1097/brs.0000000000003169
doi: 10.1097/brs.0000000000003169 |
[38] |
KARMACHARYA P, DUARTE-GARCIA A, DUBREUIL M, et al. Effect of Therapy on Radiographic Progression in Axial Spondyloarthritis: A Systematic Review and Meta-Analysis [J]. Arthritis Rheumatol, 2020, 72(5): 733-749. doi:10.1002/art.41206
doi: 10.1002/art.41206 |
[39] |
KIM J W, YOON J S, PARK S, et al. Risk of cardiovascular disease with high-dose versus low-dose use of non-steroidal anti-inflammatory drugs in ankylosing spondylitis [J]. Ann Rheum Dis, 2024, 83(8): 1028-1033. doi:10.1136/ard-2023-225406
doi: 10.1136/ard-2023-225406 |
[40] |
KOPP T I, DELCOIGNE B, ARKEMA E V, et al. Risk of neuroinflammatory events in arthritis patients treated with tumour necrosis factor alpha inhibitors: A collaborative population-based cohort study from Denmark and Sweden [J]. Ann Rheum Dis, 2020, 79(5): 566-572. doi:10.1136/annrheumdis-2019-216693
doi: 10.1136/annrheumdis-2019-216693 |
[41] |
FAUNY M, MOULIN D, D'AMICO F, et al. Paradoxical gastrointestinal effects of interleukin-17 blockers [J]. Ann Rheum Dis, 2020, 79(9): 1132-1138. doi:10.1136/annrheumdis-2020-217927
doi: 10.1136/annrheumdis-2020-217927 |
[42] |
BENAVENT D, NAVARRO-COMPÁN V. Exploring the latest advances in axial spondyloarthritis management [J]. Nat Rev Rheumatol, 2024, 20(2): 79-80. doi:10.1038/s41584-023-01072-7
doi: 10.1038/s41584-023-01072-7 |
[43] | 姜克悦, 刘磊, 王文惠. 枸橼酸托法替布治疗活动性强直性脊柱炎的随机对照研究 [J]. 实用医学杂志, 2022, 38(11): 1415-1418. |
[44] |
WORTH C, AL-MOSSAWI M H, MACDONALD J, et al. Granulocyte-macrophage colony-stimulating factor neutralisation in patients with axial spondyloarthritis in the UK (NAMASTE): A randomised, double-blind, placebo-controlled, phase 2 trial [J]. Lancet Rheumatol, 2024, 6(8): e537-e545. doi:10.1016/s2665-9913(24)00099-7
doi: 10.1016/s2665-9913(24)00099-7 |
[45] |
JAAFAR H M, AMEEN D M H, MOHAMMAD T A M, et al. The effects of nanocurcumin on immune-related factors in the ankylosing spondylitis patients: A double-blind, randomized, placebo-controlled clinical trial [J]. Mol Biol Rep, 2025, 52(1): 324. doi:10.1007/s11033-025-10397-3
doi: 10.1007/s11033-025-10397-3 |
[46] |
GRACEY E, HROMADOVá D, LIM M, et al. TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis [J]. J Clin Invest, 2020, 130(4): 1863-1878. doi:10.1172/jci126567
doi: 10.1172/jci126567 |
[47] |
CRIBBS A P, TERLECKI-ZANIEWICZ S, PHILPOTT M, et al. Histone H3K27me3 demethylases regulate human Th17 cell development and effector functions by impacting on metabolism [J]. Proc Natl Acad Sci U S A, 2020, 117(11): 6056-6066. doi:10.1073/pnas.1919893117
doi: 10.1073/pnas.1919893117 |
[48] |
CHEN L, BAI J, PENG D, et al. SZB120 Exhibits Immunomodulatory Effects by Targeting eIF2α to Suppress Th17 Cell Differentiation [J]. J Immunol, 2021, 206(5): 953-962. doi:10.4049/jimmunol.2000036
doi: 10.4049/jimmunol.2000036 |
[49] |
ROSENZWEIG H L, VANCE E E, ASARE-KONADU K, et al. Card9/neutrophil signalling axis promotes IL-17A-mediated ankylosing spondylitis [J]. Ann Rheum Dis, 2024, 83(2): 214-222. doi:10.1136/ard-2022-223146
doi: 10.1136/ard-2022-223146 |
[50] |
OGDIE A, REDDY S M, GILLESPIE S H, et al. Guselkumab versus golimumab in patients with active psoriatic arthritis and inadequate response to an initial tumor necrosis factor inhibitor: Study protocol for EVOLUTION, a pragmatic, phase 3b, open-label, randomized, controlled effectiveness trial [J]. Trials, 2025, 26(1): 96. doi:10.1186/s13063-025-08777-y
doi: 10.1186/s13063-025-08777-y |
[1] | Haoliang DUAN,Yuhua RU,Jia. CHEN. New targets for the treatment of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation [J]. The Journal of Practical Medicine, 2025, 41(5): 634-640. |
[2] | Kui XU,Jun. ZHOU. Research progress of ultrasound microbubbles in diagnosis and treatment of thyroid cancer [J]. The Journal of Practical Medicine, 2025, 41(3): 454-458. |
[3] | Xingyu WAN,Nan LI,Shuiqing LIU,Xi. ZHANG. Research advances of mesenchymal stem cells in the bone marrow microenvironment of acute myeloid leukemia [J]. The Journal of Practical Medicine, 2025, 41(2): 294-299. |
[4] | Yang ZHOU,Min XIE. Accurate diagnosis and treatment of HIT and VITT under coagulopathy convergence model and clinical pathway transformation [J]. The Journal of Practical Medicine, 2025, 41(18): 2828-2838. |
[5] | Xiaoyue LI,Na WANG,Xianni LIU,Tingli DAI,Haiwen CHEN,Jianguo XIN,Wei WANG,Menglan ZHANG. Analysis of the relationship between stromal fibrosis degree and targeted therapy resistance and prognosis in EGFR mutant lung adenocarcinoma [J]. The Journal of Practical Medicine, 2025, 41(15): 2381-2387. |
[6] | Caifang GUO,Hong FAN,Ting LUAN,Hui ZHAN,Haifeng WANG,Jiansong WANG. The role and research progress of cytoreductive nephrectomy in metastatic renal cell carcinoma [J]. The Journal of Practical Medicine, 2025, 41(13): 1952-1957. |
[7] | Fazhu FEI,Jiajun LU,Shuai ZHANG,Hao LI,Bin REN. Clinical application progress of immunization and targeted therapy for Hepatocellular Carcinoma in special populations [J]. The Journal of Practical Medicine, 2024, 40(6): 738-742. |
[8] | Sishi XU,Peipei. YE. Clinical research progress of BTK inhibitors in the treatment of mantle cell lymphoma [J]. The Journal of Practical Medicine, 2024, 40(17): 2363-2368. |
[9] | Yuting LI,Qilu YAN,Qibin. SONG. Molecular basis of variability in EGFR⁃targeted therapy response in non⁃small cell lung cancer [J]. The Journal of Practical Medicine, 2024, 40(15): 2166-2171. |
[10] | Jingwen AN,Junyun FENG,Lei RAO,Dewu LIU. Research progress on relationship between cellular senescence and scar fibrosis [J]. The Journal of Practical Medicine, 2024, 40(12): 1749-1754. |
[11] | Ruxue SUN,Mengli ZHU,Jingjing LIU,Fei. CHEN. Role and mechanism of RhoF-mediated Th17 polarization in development of acute pancreatitis [J]. The Journal of Practical Medicine, 2024, 40(10): 1351-1356. |
[12] |
LIU Yi, PEI Renzhi..
Advances of BCL ⁃ 2 inhibitor Venetoclaxfor higher ⁃ risk groups of myelodysplastic syndromes [J]. The Journal of Practical Medicine, 2022, 38(16): 2106-2109. |
[13] |
CHEN Rui, XIONG Zhuang, CHEN Renfu..
Expression of interleukin 38 in renal cell carcinoma and its correlation with clinicopathological features [J]. The Journal of Practical Medicine, 2022, 38(12): 1506-1511. |
[14] | JIANG Keyue, LIU Lei, WANG Wenhui.. Effect of tofatib citrate on active ankylosing spondylitis:A randomized controlled study [J]. The Journal of Practical Medicine, 2022, 38(11): 1415-1418. |
[15] | NIU Chunyan, SHI Yongqiang, CHEN Yue.. Targeted therapeutic drugs for nonalcoholic fatty liver disease:A review of literature [J]. The Journal of Practical Medicine, 2022, 38(11): 1439-1442. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||