[1] |
CATRINA S B, ZHENG X. Hypoxia and hypoxia - inducible factors in diabetes and its complications[J]. Diabetologia, 2021, 64(4):709-716. doi:10.1007/s00125-021-05380-z
doi: 10.1007/s00125-021-05380-z
|
[2] |
MA L, WANG J, ZHOU R, et al. Traditional Chinese Medicine-derived formulations and extracts modulating the PI3K/AKT pathway in Alzheimer's disease[J]. Front Pharmacol, 2025, 16: 1528919. doi:10.3389/fphar.2025.1528919
doi: 10.3389/fphar.2025.1528919
|
[3] |
LI R, CHEN Y, LIU G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers[J]. Cell Death Dis, 2020, 11(9): 1-12. doi:10.1038/s41419-020-02998-6
doi: 10.1038/s41419-020-02998-6
|
[4] |
SONG H P, CHU Z G, ZHANG D X, et al. PI3K-AKT pathway protects cardiomyocytes against hypoxia-induced apoptosis by MitoKATP-mediated mitochondrial translocation of pAKT[J]. Cell Physiol Biochem, 2018, 49(2): 717-727. doi:10.1159/000493037
doi: 10.1159/000493037
|
[5] |
ZHANG Q H, LI Y M, ZHANG D J. Hypoxia-inducible factor and coronary heart disease: Antagonism and protection[J]. J Clin Rehabil Tissue Engineer Res, 2021, 25(35): 5729-5734.
|
[6] |
ZHANG Z, YAO L, YANG J, et al. PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia (Review)[J]. Molecul Med Rep, 2018, 18(4): 3547-3554.
|
[7] |
AGHAEI-ZARCH S M. Crosstalk between MiRNAs/lncRNAs and PI3K/AKT signaling pathway in diabetes mellitus: Mechanistic and therapeutic perspectives[J]. Non-coding RNA Res, 2024, 9(1): 1-12. doi:10.1016/j.ncrna.2024.01.005
doi: 10.1016/j.ncrna.2024.01.005
|
[8] |
HUANG X, LIU G, GUO J, et al. The PI3K/AKT pathway in obesity and type 2 diabetes[J]. Int J Biol Sci, 2018, 14(11): 1483-1496. doi:10.7150/ijbs.27173
doi: 10.7150/ijbs.27173
|
[9] |
LI M, LIU C, BIN J, et al. Mutant hypoxia inducible factor-1α improves angiogenesis and tissue perfusion in ischemic rabbit skeletal muscle[J]. Microvascul Res, 2011, 81(1): 26-33. doi:10.1016/j.mvr.2010.09.008
doi: 10.1016/j.mvr.2010.09.008
|
[10] |
XIE J, LIAO Y, YANG L, et al. Ultrasound molecular imaging of angiogenesis induced by mutant forms of hypoxia-inducible factor-1α[J]. Cardiovasc Res, 2011, 92(2):256-266. doi:10.1093/cvr/cvr229
doi: 10.1093/cvr/cvr229
|
[11] |
MURTAZA G, VIRK H U H, KHALID M, et al. Diabetic cardiomyopathy—A comprehensive updated review[J]. Progress Cardiovasc Dis, 2019, 62(4): 315-326. doi:10.1016/j.pcad.2019.03.003
doi: 10.1016/j.pcad.2019.03.003
|
[12] |
成扶雨, 余琪琪, 袁伟. NADPH氧化酶在糖尿病心血管并发症中的研究进展[J]. 实用医学杂志, 2019, 35(14):2342- 2346.
|
[13] |
GALEONE A, ANNICCHIARICO A, BUCCOLIERO C, et al. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue[J]. Int J Mol Sci, 2024, 25(17):9481. doi:10.3390/ijms25179481
doi: 10.3390/ijms25179481
|
[14] |
PAN K L, HSU Y C, CHANG S T, et al. The Role of Cardiac Fibrosis in Diabetic Cardiomyopathy: From Pathophysiology to Clinical Diagnostic Tools[J]. Int J Mol Sci, 2023, 24(10):8604. doi:10.3390/ijms24108604
doi: 10.3390/ijms24108604
|
[15] |
YA-WEN DENG F L, ZHI-TONG LI, GAO JING-HAN, et al. Correction to: Hyperglycemia promotes myocardial dysfunction via the ERS-MAPK10 signaling pathway in db/db mice[J]. Lab Invest, 2022, 102(10):1163-1165. doi:10.1038/s41374-022-00833-4
doi: 10.1038/s41374-022-00833-4
|
[16] |
GOGIRAJU R, BOCHENEK M L, SCHÄFER K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure[J]. Front Cardiovasc Med, 2019, 6:20. doi:10.3389/fcvm.2019.00020
doi: 10.3389/fcvm.2019.00020
|
[17] |
夏夏, 夏中元. 稳定缺氧诱导因子-1α表达对1型糖尿病心肌缺血再灌注损伤大鼠心肌细胞线粒体自噬的影响[J]. 中华实用诊断与治疗杂志, 2020, 34(10): 978-981.
|
[18] |
DE J A C, HSIANG C A, HOSSEIN. Metabolic Suppression of HIF-1α Contributes to Susceptibility of Ischemic Injury in Diabetic Hearts[J]. JACC Basic Transl Sci, 2018, 3(4):499-502. doi:10.1016/j.jacbts.2018.07.001
doi: 10.1016/j.jacbts.2018.07.001
|
[19] |
钟祯, 李万根, 张霄旦. 高糖诱导 H9c2 心肌细胞TRAP1的表达变化及意义[J]. 实用医学杂志, 2018, 34(24):4022-4026.
|
[20] |
王雪梅,刘芬,曹莹,等. HIF-1α介导线粒体功能调控糖尿病心肌缺血再灌注损伤的作用机制研究[J]. 心血管病学进展,2020,41(10):1085-1090+1095.
|
[21] |
MICHAEL S D M D, CLAUDIA N M, MATTHEW K, et al. Fatty Acids Prevent Hypoxia-Inducible Factor-1α Signaling Through Decreased Succinate in Diabetes[J]. JACC Basic Transl Sci, 2018, 3(4):485-498. doi:10.1016/j.jacbts.2018.04.005
doi: 10.1016/j.jacbts.2018.04.005
|
[22] |
BESS S N, IGOE M J, DENISON A C, et al. Autofluorescence imaging of endogenous metabolic cofactors in response to cytokine stimulation of classically activated macrophages[J]. Cancer Metab, 2023, 11(1):22. doi:10.1186/s40170-023-00325-z
doi: 10.1186/s40170-023-00325-z
|
[23] |
EZEANI M, PRABHU S. PI3K (p110α) as a determinant and gene therapy for atrial enlargement in atrial fibrillation[J]. Mol Cell Biochem, 2022, 478(3):471-490. doi:10.1007/s11010-022-04526-w
doi: 10.1007/s11010-022-04526-w
|
[24] |
张家伟,许莉莉,吕佩源. PI3K/AKT信号通路与缺血性脑损伤引起的细胞凋亡研究进展[J]. 临床与病理杂志,2022,42(11):2826-2831.
|
[25] |
ZHANG Z L Y, YANG J, WANG Z, et al. PI3K/Akt and HIF-1 signaling pathway in hypoxia - ischemia (Review)[J]. Mol Med Rep, 2018, 81(1):26-33.
|
[26] |
ZHANG L Q Y, YANG C, TANG J, et al. Signaling pathway involved in hypoxia-inducible factor-1α regulation in hypoxic-ischemic cortical neurons in vitro[J]. Neurosci Lett, 2009, 461(1):1-6. doi:10.1016/j.neulet.2009.03.091
doi: 10.1016/j.neulet.2009.03.091
|
[27] |
AGHAEI-ZARCH S M. Crosstalk between MiRNAs/lncRNAs and PI3K/AKT signaling pathway in diabetes mellitus: Mechanistic and therapeutic perspectives[J]. Non - coding RNA Res, 2024, 9(2):486-507. doi:10.1016/j.ncrna.2024.01.005
doi: 10.1016/j.ncrna.2024.01.005
|
[28] |
WALKOWSKI B, KLEIBERT M, MAJKA M, et al. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart[J]. Cells, 2022, 11(9):1553. doi:10.3390/cells11091553
doi: 10.3390/cells11091553
|