实用医学杂志 ›› 2025, Vol. 41 ›› Issue (13): 2100-2104.doi: 10.3969/j.issn.1006-5725.2025.13.023
收稿日期:
2025-04-28
出版日期:
2025-07-10
发布日期:
2025-07-18
通讯作者:
宋宗斌
E-mail:songzb@csu.edu.cn
基金资助:
Yajie HAN,Jian WANG,Zongbin SONG()
Received:
2025-04-28
Online:
2025-07-10
Published:
2025-07-18
Contact:
Zongbin SONG
E-mail:songzb@csu.edu.cn
摘要:
连续使用吗啡易引发耐受,导致镇痛效果下降及不良反应增多,严重影响临床应用。突触功能可塑性通过谷氨酸能受体介导的钙信号通路、PKA/PKC/MAPK级联及胶质细胞触发的神经炎症信号,调节突触传递效能的持久性变化,促进吗啡耐受的发展。结构可塑性则涉及树突棘密度与形态的动态重塑、突触连接的新增或修剪,以及突触活性区的重构。吗啡处理后,中枢神经系统突触可塑性呈现区域特异性改变,协同推动耐受进程。本文系统综述了突触可塑性在吗啡耐受中的机制研究进展,以期为开发新型镇痛药物和优化临床治疗提供理论依据。
中图分类号:
韩雅洁,王健,宋宗斌. 中枢神经系统区域特异性突触可塑性参与吗啡耐受的研究进展[J]. 实用医学杂志, 2025, 41(13): 2100-2104.
Yajie HAN,Jian WANG,Zongbin SONG. Research progress on region⁃specific synaptic plasticity in the central nervous system involved in morphine tolerance[J]. The Journal of Practical Medicine, 2025, 41(13): 2100-2104.
[1] |
MAGEE J C, GRIENBERGER C. Synaptic Plasticity Forms and Functions[J]. Annu Rev Neurosci, 2020, 43:95-117. doi:10.1146/annurev-neuro-090919-022842
doi: 10.1146/annurev-neuro-090919-022842 |
[2] |
ROTH R H, DING J B. Cortico-basal ganglia plasticity in motor learning[J]. Neuron, 2024, 112(15):2486-2502. doi:10.1016/j.neuron.2024.06.014
doi: 10.1016/j.neuron.2024.06.014 |
[3] | 郄晓娟,李清开,刘颖,等. 基于补体C3及TGFβ1/Smad信号通路探究七氟烷麻醉对老龄小鼠突触可塑性及工作记忆力损伤的机制[J]. 实用医学杂志,2023,39(2):204-208. |
[4] | 王兆涛,徐如祥,马全红,等. 过表达精神分裂断裂基因1对APP/PS1转基因阿尔茨海默病小鼠突触可塑性及学习记忆能力的改善[J]. 实用医学杂志,2021,37(9):1117-1126. |
[5] |
BRENNAN F H, SWARTS E A, KIGERL K A, et al. Microglia promote maladaptive plasticity in autonomic circuitry after spinal cord injury in mice[J]. Sci Transl Med, 2024, 16(751):eadi3259. doi:10.1126/scitranslmed.adi3259
doi: 10.1126/scitranslmed.adi3259 |
[6] |
DEJANOVIC B, SHENG M, HANSON J E. Targeting synapse function and loss for treatment of neurodegenerative diseases[J]. Nat Rev Drug Discov, 2024, 23(1):23-42. doi:10.1038/s41573-023-00823-1
doi: 10.1038/s41573-023-00823-1 |
[7] |
CHU W G, WANG F D, SUN Z C, et al. TRPC1/4/5 channels contribute to morphine-induced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity[J]. FASEB J, 2020, 34(6):8526-8543. doi:10.1096/fj.202000154rr
doi: 10.1096/fj.202000154rr |
[8] |
CHEN S R, CHEN H, JIN D, et al. Brief Opioid Exposure Paradoxically Augments Primary Afferent Input to Spinal Excitatory Neurons via alpha2delta-1-Dependent Presynaptic NMDA Receptors[J]. J Neurosci, 2022, 42(50):9315-9329. doi:10.1523/jneurosci.1704-22.2022
doi: 10.1523/jneurosci.1704-22.2022 |
[9] |
BISCHOFF F P, VAN BRANDT S, VIELLEVOYE M, et al. Design, Synthesis, and Characterization of GluN2A Negative Allosteric Modulators Suitable for In Vivo Exploration[J]. J Med Chem, 2025, 68(4):4672-4693. doi:10.1021/acs.jmedchem.4c02751
doi: 10.1021/acs.jmedchem.4c02751 |
[10] |
ABED A S AL, SELLAMI A, POTIER M, et al. Age-related impairment of declarative memory: Linking memorization of temporal associations to GluN2B redistribution in dorsal CA1[J]. Aging Cell, 2020, 19(10):e13243. doi:10.1111/acel.13243
doi: 10.1111/acel.13243 |
[11] |
HANSON J E, YUAN H, PERSZYK R E, et al. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry[J]. Neuropsychopharmacology, 2024, 49(1):51-66. doi:10.1038/s41386-023-01614-3
doi: 10.1038/s41386-023-01614-3 |
[12] |
BUONARATI O R, HAMMES E A, WATSON J F, et al. Mechanisms of postsynaptic localization of AMPA-type glutamate receptors and their regulation during long-term potentiation[J]. Sci Signal, 2019, 12(562):eaar6889. doi:10.1126/scisignal.aar6889
doi: 10.1126/scisignal.aar6889 |
[13] |
RAHBAN M, DANYALI S, ZARINGHALAM J,et al. Pharmacological blockade of neurokinin1 receptor restricts morphine-induced tolerance and hyperalgesia in the rat[J]. Scand J Pain, 2022, 22(1):193-203. doi:10.1515/sjpain-2021-0052
doi: 10.1515/sjpain-2021-0052 |
[14] |
RODRÍGUEZ-MUÑOZ M, SÁNCHEZ-BLÁZQUEZ P, VICENTE-SÁNCHEZ A, et al. The mu-opioid receptor and the NMDA receptor associate in PAG neurons: Implications in pain control[J]. Neuropsychopharmacology, 2012, 37(2):338-349. doi:10.1038/npp.2011.155
doi: 10.1038/npp.2011.155 |
[15] |
ZHOU Z, LIU A, XIA S, et al. The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning[J]. Nat Neurosci, 2018, 21(1):50-62. doi:10.1038/s41593-017-0030-z
doi: 10.1038/s41593-017-0030-z |
[16] |
HU X, TIAN X, GUO X, et al. AMPA receptor positive allosteric modulators attenuate morphine tolerance and dependence[J]. Neuropharmacology, 2018, 137:50-58. doi:10.1016/j.neuropharm.2018.04.020
doi: 10.1016/j.neuropharm.2018.04.020 |
[17] |
YAO C, FANG X, RU Q, et al. Tiam1-mediated maladaptive plasticity underlying morphine tolerance and hyperalgesia[J]. Brain, 2024, 147(7):2507-2521. doi:10.1093/brain/awae106
doi: 10.1093/brain/awae106 |
[18] |
XIAO L, HAN X, WANG X E, et al. Spinal Serum- and Glucocorticoid-Regulated Kinase 1 (SGK1) Signaling Contributes to Morphine-Induced Analgesic Tolerance in Rats[J]. Neuroscience, 2019, 413:206-218. doi:10.1016/j.neuroscience.2019.06.007
doi: 10.1016/j.neuroscience.2019.06.007 |
[19] |
NAZARI S, SADAT-SHIRAZI M S, SHAHBAZI A, et al. The effect of morphine administration on GluN3B NMDA receptor subunit mRNA expression in rat brain[J]. Acta Neurobiol Exp (Wars), 2024, 84(1):89-97. doi:10.55782/ane-2024-2545
doi: 10.55782/ane-2024-2545 |
[20] |
NEJAD G G, MOTTARLINI F, TAVASSOLI Z, et al. Conditioned morphine tolerance promotes neurogenesis, dendritic remodeling and pro-plasticity molecules in the adult rat hippocampus[J]. Addict Biol, 2024, 29(3):e13377. doi:10.1111/adb.13377
doi: 10.1111/adb.13377 |
[21] |
DARVISHMOLLA M, SAEEDI N, TAVASSOLI Z, et al. Maladaptive plasticity induced by morphine is mediated by hippocampal astrocytic Connexin-43[J]. Life Sci, 2023, 330:121969. doi:10.1016/j.lfs.2023.121969
doi: 10.1016/j.lfs.2023.121969 |
[22] |
ANVARI S, JAVAN M, MIRNAJAFI-ZADEH J, et al. Repeated Morphine Exposure Alters Temporoamonic-CA1 Synaptic Plasticity in Male Rat Hippocampus[J]. Neuroscience, 2024, 545:148-157. doi:10.1016/j.neuroscience.2024.03.015
doi: 10.1016/j.neuroscience.2024.03.015 |
[23] |
GHAMKHARINEJAD G, MOTTARLINI F, TAVASSOLI Z, et al. Habituation to novel stimuli alters hippocampal plasticity associated with morphine tolerance in male Wistar rats[J]. Brain Res, 2025, 1853:149508. doi:10.1016/j.brainres.2025.149508
doi: 10.1016/j.brainres.2025.149508 |
[24] |
CAO S, XIAO Z, SUN M, et al. D-serine in the midbrain periaqueductal gray contributes to morphine tolerance in rats[J]. Mol Pain, 2016, 12:1744806916646786. doi:10.1177/1744806916646786
doi: 10.1177/1744806916646786 |
[25] |
DENG M, CHEN S R, CHEN H, et al. Mitogen-activated protein kinase signaling mediates opioid-induced presynaptic NMDA receptor activation and analgesic tolerance[J]. J Neurochem, 2019, 148(2):275-290. doi:10.1111/jnc.14628
doi: 10.1111/jnc.14628 |
[26] |
JIN D, CHEN H, ZHOU M H, et al. mGluR5 from Primary Sensory Neurons Promotes Opioid-Induced Hyperalgesia and Tolerance by Interacting with and Potentiating Synaptic NMDA Receptors[J]. J Neurosci, 2023, 43(31):5593-5607. doi:10.1523/jneurosci.0601-23.2023
doi: 10.1523/jneurosci.0601-23.2023 |
[27] |
OHASHI Y, SAKHRI F Z, IKEMOTO H, et al. Yokukansan Inhibits the Development of Morphine Tolerance by Regulating Presynaptic Proteins in DRG Neurons[J]. Front Pharmacol, 2022, 13:862539. doi:10.3389/fphar.2022.862539
doi: 10.3389/fphar.2022.862539 |
[28] |
ZHONG W, MA X, XING Y, et al. Blockade of peripheral nociceptive signal input relieves the formation of spinal central sensitization and retains morphine efficacy in a neuropathic pain rat model[J]. Neurosci Lett, 2020, 716:134643. doi:10.1016/j.neulet.2019.134643
doi: 10.1016/j.neulet.2019.134643 |
[29] |
YUAN L, LUO L, MA X, et al. Chronic morphine induces cyclic adenosine monophosphate formation and hyperpolarization-activated cyclic nucleotide-gated channel expression in the spinal cord of mice[J]. Neuropharmacology, 2020, 176:108222. doi:10.1016/j.neuropharm.2020.108222
doi: 10.1016/j.neuropharm.2020.108222 |
[30] |
WILSON-POE A R, JEONG H J, VAUGHAN C W. Chronic morphine reduces the readily releasable pool of GABA, a presynaptic mechanism of opioid tolerance[J]. J Physiol, 2017, 595(20):6541-6555. doi:10.1113/jp274157
doi: 10.1113/jp274157 |
[31] |
ZHU Q M, WU L X, ZHANG B, et al. Donepezil prevents morphine tolerance by regulating N-methyl-d-aspartate receptor, protein kinase C and CaM-dependent kinase II expression in rats[J]. Pharmacol Biochem Behav, 2021, 206:173209. doi:10.1016/j.pbb.2021.173209
doi: 10.1016/j.pbb.2021.173209 |
[32] |
HIROKI T, SUTO T, OHTA J, et al. Spinal gamma-Aminobutyric Acid Interneuron Plasticity Is Involved in the Reduced Analgesic Effects of Morphine on Neuropathic Pain[J]. J Pain, 2022, 23(4):547-557. doi:10.1016/j.jpain.2021.10.002
doi: 10.1016/j.jpain.2021.10.002 |
[33] |
ZHANG J, LIU Z, LIU X, et al. Intravenous Injection of GluR2-3Y Inhibits Repeated Morphine-Primed Reinstatement of Drug Seeking in Rats[J]. Brain Sci, 2023, 13(4):590. doi:10.3390/brainsci13040590
doi: 10.3390/brainsci13040590 |
[34] |
RUSSELL S E, PUTTICK D J, SAWYER A M, et al. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats[J]. J Neurosci, 2016, 36(21):5748-5762. doi:10.1523/jneurosci.2875-12.2016
doi: 10.1523/jneurosci.2875-12.2016 |
[35] |
GEOFFROY H, CANESTRELLI C, MARIE N, et al. Morphine-Induced Dendritic Spine Remodeling in Rat Nucleus Accumbens Is Corticosterone Dependent[J]. Int J Neuropsychopharmacol, 2019, 22(6):394-401. doi:10.1093/ijnp/pyz014
doi: 10.1093/ijnp/pyz014 |
[36] |
MADAYAG A C, GOMEZ D, ANDERSON E M, et al. Cell-type and region-specific nucleus accumbens AMPAR plasticity associated with morphine reward, reinstatement, and spontaneous withdrawal[J]. Brain Struct Funct, 2019, 224(7):2311-2324. doi:10.1007/s00429-019-01903-y
doi: 10.1007/s00429-019-01903-y |
[37] |
LEFEVRE E M, GAUTHIER E A, BYSTROM L L, et al. Differential Patterns of Synaptic Plasticity in the Nucleus Accumbens Caused by Continuous and Interrupted Morphine Exposure[J]. J Neurosci, 2023, 43(2):308-318. doi:10.1523/jneurosci.0595-22.2022
doi: 10.1523/jneurosci.0595-22.2022 |
[38] |
JAECKEL E R, ARIAS-HERVERT E R, PEREZ-MEDINA A L, et al. Chronic morphine treatment induces sex- and synapse-specific cellular tolerance on thalamo-cortical mu opioid receptor signaling[J]. J Neurophysiol, 2024, 132(3):968-978. doi:10.1152/jn.00265.2024
doi: 10.1152/jn.00265.2024 |
[39] |
CHEN G, HAN W, LI A, et al. Phosphorylation of GluN2B subunits of N-methyl-d-aspartate receptors in the frontal association cortex involved in morphine-induced conditioned place preference in mice[J]. Neurosci Lett, 2021, 741:135470. doi:10.1016/j.neulet.2020.135470
doi: 10.1016/j.neulet.2020.135470 |
[40] |
YANG Z Z, LI L, WANG L, et al. siRNA capsulated brain-targeted nanoparticles specifically knock down OATP2B1 in mice: A mechanism for acute morphine tolerance suppression[J]. Sci Rep, 2016, 6:33338. doi:10.1038/srep33338
doi: 10.1038/srep33338 |
[41] |
SENEY M L, KIM S M, GLAUSIER J R, et al. Transcriptional Alterations in Dorsolateral Prefrontal Cortex and Nucleus Accumbens Implicate Neuroinflammation and Synaptic Remodeling in Opioid Use Disorder[J]. Biol Psychiatry, 2021, 90(8):550-562. doi:10.1016/j.biopsych.2021.06.007
doi: 10.1016/j.biopsych.2021.06.007 |
[42] |
LASEK A W, CHEN H, CHEN W Y. Releasing Addiction Memories Trapped in Perineuronal Nets[J]. Trends Genet, 2018, 34(3):197-208. doi:10.1016/j.tig.2017.12.004
doi: 10.1016/j.tig.2017.12.004 |
[43] |
CHEN Y H, HU N Y, WU D Y, et al. PV network plasticity mediated by neuregulin1-ErbB4 signalling controls fear extinction[J]. Mol Psychiatry, 2022, 27(2):896-906. doi:10.1038/s41380-021-01355-z
doi: 10.1038/s41380-021-01355-z |
[1] | 周旭,逯冉冉,任芳丽,彭小雨,杨新玲. 表没食子儿茶素没食子酸酯通过自噬-溶酶体途径对MPTP诱导帕金森病模型小鼠的作用[J]. 实用医学杂志, 2025, 41(8): 1097-1104. |
[2] | 赵圆宇,谭敏,赵慧,杨静,赵丰,杜江. 1型糖尿病大鼠皮质神经元与突触数量变化对认知功能的影响[J]. 实用医学杂志, 2025, 41(13): 1997-2003. |
[3] | 甘颖盈,胡敏,崔淑雅,柴智,樊慧杰. 骨形态发生蛋白信号通路在中枢神经系统中的研究进展[J]. 实用医学杂志, 2025, 41(1): 141-145. |
[4] | 姜华,张丽敏,王丹,韩平,孙越红,李玉文,张晨曦,姜文灿,李虓,赵晖. 脑脊液联合血常规检测在多发性脑胶质瘤与原发性中枢神经系统淋巴瘤鉴别诊断中的临床价值[J]. 实用医学杂志, 2024, 40(13): 1864-1868. |
[5] | 毛元元,袁静静. 长链非编码RNA H19在中枢神经系统疾病的研究进展[J]. 实用医学杂志, 2023, 39(23): 3021-3026. |
[6] | 许威,彭涛,曾梦柳. A1型星形胶质细胞:治疗神经退行性和神经炎性疾病的新靶点[J]. 实用医学杂志, 2023, 39(23): 3143-3148. |
[7] | 蔡陆威 陶陆阳 高原. 白细胞介素⁃38在中枢神经系统疾病中的作用及潜在性机制研究进展[J]. 实用医学杂志, 2022, 38(4): 511-515. |
[8] | 汤诗怡 赖梅菁 邱美茜 詹丽璇 . 小胶质细胞介导的突触修剪在慢性脑缺血中的作用及其机制 [J]. 实用医学杂志, 2022, 38(20): 2624-2629. |
[9] | 赵培源 陈少昀 刘喜红. lncRNA 与miRNA 相互作用对中枢神经系统发育的影响[J]. 实用医学杂志, 2022, 38(18): 2373-2376. |
[10] | 徐晓峰, 罗汉将, 莫琼, 左丽丝, 黄秀仙, 陈敏 . 异常增加的α⁃突触核蛋白对帕金森病模型小鼠黑质及结肠多巴胺受体D1的表达影响 [J]. 实用医学杂志, 2021, 37(9): 1106-1116. |
[11] | 王兆涛 徐如祥 马全红 王业忠 姬云翔 . 过表达精神分裂断裂基因1对APP/PS1转基因阿尔茨海默病小鼠突触可塑性及学习记忆能力的改善 [J]. 实用医学杂志, 2021, 37(9): 1117-1126. |
[12] | 耿磊 孙毅 赵妍 万金鑫 许磊 叶永盛 汪秀玲 徐凯. 不同区域的ADC值、rADC值对原发性中枢神经系统淋巴瘤诊断与鉴别及其与Ki-67相关性 [J]. 实用医学杂志, 2021, 37(19): 2530-2534. |
[13] | 陈虹茹, 何川, 黄重生, 王颖 , 孔立红 . 电针联合重复经颅磁刺激对D-半乳糖诱导的阿尔茨海默病样模型大鼠学习记忆能力及神经炎症的影响 [J]. 实用医学杂志, 2021, 37(12): 1534-1538. |
[14] | 杨卓滢, 赵源征, 何远宏, 孙若楠, 苑和平.
KATP 通道开放剂对脑梗死后突触可塑性的影响
[J]. 实用医学杂志, 2020, 36(24): 3328-3332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||