1 |
PANKRATZ N, FOROUD T. Genetics of Parkinson disease[J]. Genet Med, 2007, 9(12):801-811. doi:10.1097/gim.0b013e31815bf97c
doi: 10.1097/gim.0b013e31815bf97c
|
2 |
DE LAU L M, BRETELER M M. Epidemiology of Parkinson's disease[J]. Lancet Neurol, 2006, 5(6):525-535. doi:10.1016/s1474-4422(06)70471-9
doi: 10.1016/s1474-4422(06)70471-9
|
3 |
XILOURI M, BREKK O R, STEFANIS L. Autophagy and Alpha-Synuclein: Relevance to Parkinson's Disease and Related Synucleopathies[J]. Mov Disord, 2016,31(2):178-192.
|
4 |
GONÇALVES P B, SODERO A C R, CORDEIRO Y. Green Tea Epigallocatechin-3-gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases[J]. Biomolecules, 2021,11(5):767. doi:10.3390/biom11050767
doi: 10.3390/biom11050767
|
5 |
GAO W, WANG Y, WANG F, et al. Ergothioneine exerts neuroprotective effects in Parkinson's disease: Targeting α-synuclein aggregation and oxidative stress[J]. Food Res Int, 2025,201:115590. doi:10.1016/j.foodres.2024.115590
doi: 10.1016/j.foodres.2024.115590
|
6 |
GADHE L, SAKUNTHALA A, MUKHERJEE S, et al. Intermediates of α-synuclein aggregation: Implications in Parkinson's disease pathogenesis[J]. Biophys Chem, 2022,281:106736. doi:10.1016/j.bpc.2021.106736
doi: 10.1016/j.bpc.2021.106736
|
7 |
DE WET S, THEART R, LOOS B. Cogs in the autophagic machine-equipped to combat dementia-prone neurodegenerative diseases[J]. Front Mol Neurosci, 2023,16:1225227. doi:10.3389/fnmol.2023.1225227
doi: 10.3389/fnmol.2023.1225227
|
8 |
LIANG Y, ZHONG G, REN M, et al. The Role of Ubiquitin-Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease[J]. Neuromolecular Med, 2023,25(4):471-488. doi:10.1007/s12017-023-08755-0
doi: 10.1007/s12017-023-08755-0
|
9 |
FISHMAN-JACOB T, YOUDIM M B H. A sporadic Parkinson's disease model via silencing of the ubiquitin-proteasome/E3 ligase component, SKP1A[J]. J Neural Transm (Vienna), 2024,131(6):675-707. doi:10.1007/s00702-023-02687-6
doi: 10.1007/s00702-023-02687-6
|
10 |
DROBNY A, BOROS F A, BALTA D, et al. Reciprocal effects of alpha-synuclein aggregation and lysosomal homeostasis in synucleinopathy models[J]. Transl Neurodegener, 2023,12(1):31. doi:10.1186/s40035-023-00363-z
doi: 10.1186/s40035-023-00363-z
|
11 |
SENKEVICH K, GAN-OR Z. Autophagy lysosomal pathway dysfunction in Parkinson's disease; evidence from human genetics[J]. Parkinsonism Relat Disord, 2020,73:60-71. doi:10.1016/j.parkreldis.2019.11.015
doi: 10.1016/j.parkreldis.2019.11.015
|
12 |
MALAR D S, PRASANTH M I, BRIMSON J M, et al. Neuroprotective Properties of Green Tea (Camellia sinensis) in Parkinson's Disease: A Review[J]. Molecules, 2020,25(17):3926. doi:10.3390/molecules25173926
doi: 10.3390/molecules25173926
|
13 |
PICCOLI G, VOLTA M. LRRK2 along the Golgi and lysosome connection: A jamming situation[J]. Biochem Soc Trans, 2021,49(5):2063-2072. doi:10.1042/bst20201146
doi: 10.1042/bst20201146
|
14 |
LU R, ZHOU X, ZHANG L, et al. Nrf2 Deficiency Exacerbates Parkinson's Disease by Aggravating NLRP3 Inflammasome Activation in MPTP-Induced Mouse Models and LPS-Induced BV2 Cells[J]. J Inflamm Res, 2024,17:6277-6295. doi:10.2147/jir.s478683
doi: 10.2147/jir.s478683
|
15 |
RUDENOK M M, SHADRINA M I, FILATOVA E V, et al. Expression Analysis of Genes Involved in Transport Processes in Mice with MPTP-Induced Model of Parkinson's Disease[J]. Life (Basel), 2022,12(5):751. doi:10.3390/life12050751
doi: 10.3390/life12050751
|
16 |
胡梦妮,张小蕾,荣臻,等. 电针对MPTP诱导帕金森病小鼠FoXO1/NLRP3通路介导神经炎症的影响[J]. 实用医学杂志, 2024, 40(11): 1494-1499. doi:10.3969/j.issn.1006-5725.2024.11.005
doi: 10.3969/j.issn.1006-5725.2024.11.005
|
17 |
LI S, WANG Z, LIU G, et al. Neurodegenerative diseases and catechins: (-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress[J]. Front Nutr,2024,11:1425839. doi:10.3389/fnut.2024.1425839
doi: 10.3389/fnut.2024.1425839
|
18 |
逯冉冉,周旭,张利杰,等. 富马酸二甲酯减轻帕金森病模型鼠神经损伤的作用机制[J]. 中国组织工程研究, 2025,29(5):989-994. doi:10.12307/2025.294
doi: 10.12307/2025.294
|
19 |
PRASAD E M, HUNG S Y. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease[J]. Antioxidants (Basel), 2020,9(10):1007. doi:10.3390/antiox9101007
doi: 10.3390/antiox9101007
|
20 |
姜宗飞,杨文平,司锋,等. 中国帕金森病发病负担分析及预测[J]. 中华神经医学杂志, 2024,23(12):1205-1210.
|
21 |
PAYNE A, NAHASHON S, TAKA E, et al. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age[J]. Biomolecules, 2022,12(3):371. doi:10.3390/biom12030371
doi: 10.3390/biom12030371
|
22 |
KIM H S, QUON M J, KIM J A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate[J]. Redox Biol, 2014,2:187-195. doi:10.1016/j.redox.2013.12.022
doi: 10.1016/j.redox.2013.12.022
|
23 |
LIU Y, LONG Y, FANG J, et al. Advances in the Anti-Atherosclerotic Mechanisms of Epigallocatechin Gallate[J]. Nutrients, 2024,16(13):2074. doi:10.3390/nu16132074
doi: 10.3390/nu16132074
|
24 |
SHARMA V, CHAUDHARY A A, BAWARI S, et al. Unraveling cancer progression pathways and phytochemical therapeutic strategies for its management[J]. Front Pharmacol, 2024,15:1414790. doi:10.3389/fphar.2024.1414790
doi: 10.3389/fphar.2024.1414790
|
25 |
TALIB WH, AWAJAN D, ALQUDAH A, et al. Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets[J]. Molecules, 2024,29(6):1373. doi:10.3390/molecules29061373
doi: 10.3390/molecules29061373
|
26 |
CHEN Y, LIU Z, GONG Y. Neuron-immunity communication: Mechanism of neuroprotective effects in EGCG[J]. Crit Rev Food Sci Nutr, 2024,64(25):9333-9352. doi:10.1080/10408398.2023.2212069
doi: 10.1080/10408398.2023.2212069
|
27 |
ESMAEELPANAH E, RAZAVI B M, VAHDATI HASANI F, et al. Evaluation of epigallocatechin gallate and epicatechin gallate effects on acrylamide-induced neurotoxicity in rats and cytotoxicity in PC 12 cells[J]. Drug Chem Toxicol, 2018,41(4):441-448. doi:10.1080/01480545.2017.1381108
doi: 10.1080/01480545.2017.1381108
|
28 |
XIE X, WAN J, ZHENG X, et al. Synergistic effects of epigallocatechin gallate and l-theanine in nerve repair and regeneration by anti-amyloid damage, promoting metabolism, and nourishing nerve cells[J]. Front Nutr, 2022,9:951415. doi:10.3389/fnut.2022.951415
doi: 10.3389/fnut.2022.951415
|
29 |
NAKAMURA S, YOSHIMORI T. Autophagy and Longevity[J]. Mol Cells, 2018,41(1):65-72.
|
30 |
LU R, ZHANG L, YANG X. Interaction between autophagy and the NLRP3 inflammasome in Alzheimer's and Parkinson's disease[J]. Front Aging Neurosci, 2022,14:1018848. doi:10.3389/fnagi.2022.1018848
doi: 10.3389/fnagi.2022.1018848
|
31 |
LI R, LU Y, ZHANG Q, et al. Piperine promotes autophagy flux by P2RX4 activation in SNCA/α-synuclein-induced Parkinson disease model[J]. Autophagy, 2022,18(3):559-575. doi:10.1080/15548627.2021.1937897
doi: 10.1080/15548627.2021.1937897
|
32 |
XUAN F, JIAN J. Epigallocatechin gallate exerts protective effects against myocardial ischemia/reperfusion injury through the PI3K/Akt pathway-mediated inhibition of apoptosis and the restoration of the autophagic flux[J]. Int J Mol Med, 2016,38(1):328-336. doi:10.3892/ijmm.2016.2615
doi: 10.3892/ijmm.2016.2615
|
33 |
ZHAO L, LIU S, XU J, et al. A new molecular mechanism underlying the EGCG-mediated autophagic modulation of AFP in HepG2 cells[J]. Cell Death Dis, 2017,8(11):e3160. doi:10.1038/cddis.2017.563
doi: 10.1038/cddis.2017.563
|
34 |
ZHANG S, CAO M, FANG F. The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)- Induced Apoptosis of Human Diseases[J]. Med Sci Monit, 2020,26:e924558. doi:10.12659/msm.924558
doi: 10.12659/msm.924558
|
35 |
KHAN M R, YIN X, KANG S U, et al. Enhanced mTORC1 signaling and protein synthesis in pathologic α-synuclein cellular and animal models of Parkinson's disease[J]. Sci Transl Med,2023,15(724):eadd0499. doi:10.1126/scitranslmed.add0499
doi: 10.1126/scitranslmed.add0499
|
36 |
BAYATI A, AYOUBI R, AGUILA A, et al. Modeling Parkinson's disease pathology in human dopaminergic neurons by sequential exposure to α-synuclein fibrils and proinflammatory cytokines[J]. Nat Neurosci, 2024,27(12):2401-2416. doi:10.1038/s41593-024-01775-4
doi: 10.1038/s41593-024-01775-4
|
37 |
ARMELI F, MENGONI B, LASKIN D L, et al. Interplay among Oxidative Stress, Autophagy, and the Endocannabinoid System in Neurodegenerative Diseases: Role of the Nrf2- p62/SQSTM1 Pathway and Nutraceutical Activation[J]. Curr Issues Mol Biol,2024,46(7):6868-6884. doi:10.3390/cimb46070410
doi: 10.3390/cimb46070410
|
38 |
丁新玲,孙会艳,李强,等. EGCG对帕金森病神经保护作用机制研究进展[J]. 中国药理学通报, 2023,39(10):1806-1810.
|
39 |
ZHANG Y, WU H, XU C, et al. (-)-Epigallocatechin gallate alleviates chronic unpredictable mild stress-induced depressive symptoms in mice by regulating the mTOR autophagy pathway and inhibiting NLRP3 inflammasome activation[J]. Food Sci Nutr, 2023,12(1):459-470. doi:10.1002/fsn3.3761
doi: 10.1002/fsn3.3761
|