实用医学杂志 ›› 2025, Vol. 41 ›› Issue (3): 454-458.doi: 10.3969/j.issn.1006-5725.2025.03.023
• 综述 • 上一篇
收稿日期:
2024-08-26
出版日期:
2025-02-10
发布日期:
2025-02-19
通讯作者:
周军
E-mail:zjsts8@163.com
基金资助:
Received:
2024-08-26
Online:
2025-02-10
Published:
2025-02-19
Contact:
Jun. ZHOU
E-mail:zjsts8@163.com
摘要:
超声微泡是以脂质、蛋白质、高分子材料等作为微泡壳包绕核心气体形成的囊泡。不仅可以作为造影剂,在分子水平上进行诊断并监测病理过程,也能作为非侵入性治疗方式的载体,携带药物或者基因通过血液循环到达疾病区域,从而发挥治疗效果。与传统的诊疗方式相比,超声微泡表现出巨大的潜力,以此为基础发展而来的靶向造影与治疗,可以在早期识别特定类型的肿瘤,并在增强抗肿瘤疗效的同时,通过降低化疗药物带来的全身毒性改善预后。这为甲状腺癌未来的诊治提供了全新的思路与策略。本文就超声微泡在甲状腺癌诊疗中的运用研究进行综述。
中图分类号:
许魁,周军. 超声微泡在甲状腺癌诊疗中的研究进展[J]. 实用医学杂志, 2025, 41(3): 454-458.
Kui XU,Jun. ZHOU. Research progress of ultrasound microbubbles in diagnosis and treatment of thyroid cancer[J]. The Journal of Practical Medicine, 2025, 41(3): 454-458.
1 |
HU S, WU X, JIANG H. Trends and projections of the global burden of thyroid cancer from 1990 to 2030[J]. J Glob Health, 2024, 14: 4084. doi:10.7189/jogh.14.04084
doi: 10.7189/jogh.14.04084 |
2 |
ZHOU X, GUO L, SHI D, et al. Biocompatible Chitosan Nanobubbles for Ultrasound-Mediated Targeted Delivery of Doxorubicin[J]. Nanoscale Res Lett, 2019, 14(1): 24. doi:10.1186/s11671-019-2853-x
doi: 10.1186/s11671-019-2853-x |
3 |
JANGJOU A, MEISAMI A H, JAMALI K, et al. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication[J]. J Biomed Sci, 2021, 28(1): 49. doi:10.1186/s12929-021-00744-4
doi: 10.1186/s12929-021-00744-4 |
4 |
LIANG X, CHEN W, WANG C, et al. A mesoporous theranostic platform for ultrasound and photoacoustic dual imaging-guided photothermal and enhanced starvation therapy for cancer[J]. Acta Biomater, 2024, 183: 264-277. doi:10.1016/j.actbio.2024.05.040
doi: 10.1016/j.actbio.2024.05.040 |
5 |
PISCAGLIA F, BOLONDI L. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations[J]. Ultrasound Med Biol, 2006, 32(9): 1369-1375. doi:10.1016/j.ultrasmedbio.2006.05.031
doi: 10.1016/j.ultrasmedbio.2006.05.031 |
6 |
BALOCH Z W, ASA S L, BARLETTA J A, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms[J]. Endocr Pathol, 2022, 33(1): 27-63. doi:10.1007/s12022-022-09707-3
doi: 10.1007/s12022-022-09707-3 |
7 |
LEONG D, GILL A J, TURCHIINI J, et al. The Prognostic Impact of Extent of Vascular Invasion in Follicular Thyroid Carcinoma[J]. World J Surg, 2023, 47(2): 412-420. doi:10.1007/s00268-022-06696-6
doi: 10.1007/s00268-022-06696-6 |
8 |
PELIZZO M R, MAZZA E I, MIAN C, et al. Medullary thyroid carcinoma[J]. Expert Rev Anticancer Ther, 2023, 23(9): 943-957. doi:10.1080/14737140.2023.2247566
doi: 10.1080/14737140.2023.2247566 |
9 |
MANIAKAS A, ZAFEREO M, CABANILLAS M E. Anaplastic Thyroid Cancer: New Horizons and Challenges[J]. Endocrinol Metab Clin North Am, 2022, 51(2): 391-401. doi:10.1016/j.ecl.2021.11.020
doi: 10.1016/j.ecl.2021.11.020 |
10 |
HVILSOM G B, LONDERO S C, HAHN C H, et al. Anaplastic thyroid carcinoma in Denmark 1996-2012: A national prospective study of 219 patients[J]. Cancer Epidemiol, 2018, 53: 65-71. doi:10.1016/j.canep.2018.01.011
doi: 10.1016/j.canep.2018.01.011 |
11 |
BAUD G, JANNIN A, MARCINIAK C, et al. Impact of Lymph Node Dissection on Postoperative Complications of Total Thyroidectomy in Patients with Thyroid Carcinoma[J]. Cancers (Basel), 2022, 14(21):5462. doi:10.3390/cancers14215462
doi: 10.3390/cancers14215462 |
12 |
FACKELMAYER O J, INABNET W R. Lobectomy or Total Thyroidectomy-Where Is the Pendulum now for Differentiated Thyroid Cancer?[J]. Surg Oncol Clin N Am, 2023, 32(2): 373-381. doi:10.1016/j.soc.2022.10.011
doi: 10.1016/j.soc.2022.10.011 |
13 |
ZHOU L, LI S, WU Y, et al. Significant dysregulation of lipid metabolism in patients with papillary thyroid carcinoma after thyroidectomy[J]. Front Endocrinol (Lausanne), 2023, 14: 1223527. doi:10.3389/fendo.2023.1223527
doi: 10.3389/fendo.2023.1223527 |
14 |
AHN S H, LEE Y J, HONG S, et al. Risk of Fractures in Thyroid Cancer Patients With Postoperative Hypoparathyroidism:A Nationwide Cohort Study in Korea[J]. J Bone Miner Res, 2023, 38(9): 1268-1277. doi:10.1002/jbmr.4871
doi: 10.1002/jbmr.4871 |
15 |
MULITA F, VERRAS G I, DAFNOMILI V D, et al. Thyroidectomy for the Management of Differentiated Thyroid Carcinoma and their Outcome on Early Postoperative Complications: A 6-year Single-Centre Retrospective Study[J].Chirurgia (Bucur), 2022, 117(5): 556-562. doi:10.21614/chirurgia.2736
doi: 10.21614/chirurgia.2736 |
16 |
TEMPERLEY T S, TEMPERLEY H C, O'SULLIVAN N J, et al. Tracheoesophageal fistula development following radiotherapy and tyrosine kinase inhibitors in a patient with advanced follicular thyroid carcinoma: a case-based review[J]. Ir J Med Sci, 2024, 193(3): 1143-1147. doi:10.1007/s11845-023-03559-4
doi: 10.1007/s11845-023-03559-4 |
17 |
TUTTLE R M, AHUJA S, AVRAM A M, et al. Controversies,Consensus,and Collaboration in the Use of(131)ITherapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association[J]. Thyroid, 2019, 29(4): 461-470. doi:10.1089/thy.2018.0597
doi: 10.1089/thy.2018.0597 |
18 |
SHANGGUAN L, ZHANG P, FANG S, et al. Preliminary Study on the Relationship of BRAF Mutations with the Outcome of theFirst(131)IRadiotherapy and Malignant Biological Characteristics in Papillary Thyroid Carcinoma[J]. Int J Gen Med, 2021, 14: 8981-8989. doi:10.2147/ijgm.s337311
doi: 10.2147/ijgm.s337311 |
19 |
CHEN M, ZHANG K Q, XU Y F, et al. Shear wave elastography and contrast-enhanced ultrasonography in the diagnosis of thyroid malignant nodules[J]. Mol Clin Oncol, 2016, 5(6): 724-730. doi:10.3892/mco.2016.1053
doi: 10.3892/mco.2016.1053 |
20 |
AVERKIOU M A, BRUCE M F, Powers J E, et al. Imaging Methods for Ultrasound Contrast Agents[J]. Ultrasound Med Biol, 2020, 46(3): 498-517. doi:10.1016/j.ultrasmedbio.2019.11.004
doi: 10.1016/j.ultrasmedbio.2019.11.004 |
21 |
MINE Y, TAKADA E, SUGIMOTO K, et al. Principle of contrast-enhanced ultrasonography[J]. J Med Ultrason (2001), 2024,51(4):691. doi:10.1007/s10396-024-01500-5
doi: 10.1007/s10396-024-01500-5 |
22 |
ZHOU X, ZHOU P, HU Z, et al. Diagnostic Efficiency of Quantitative Contrast-Enhanced Ultrasound Indicators for Discriminating BenignFromMalignant Solid Thyroid Nodules[J]. J Ultrasound Med, 2018, 37(2): 425-437. doi:10.1002/jum.14347
doi: 10.1002/jum.14347 |
23 |
PETRASOVA H, SLAISOVA R, ROHAN T, et al. Contrast-Enhanced Ultrasonography for Differential Diagnosis of Benign and Malignant Thyroid Lesions: Single-Institutional Prospective Study of Qualitative and Quantitative CEUS Characteristics[J]. Contrast Media Mol Imaging, 2022, 2022: 8229445. doi:10.1155/2022/8229445
doi: 10.1155/2022/8229445 |
24 |
ZHAO H, LIU X, LEI B, et al. Diagnostic performance of thyroid imaging reporting and data system (TI-RADS) alone and in combination with contrast-enhanced ultrasonography for the characterization of thyroid nodules[J]. Clin Hemorheol Microcirc, 2019, 72(1): 95-106. doi:10.3233/ch-180457
doi: 10.3233/ch-180457 |
25 | 杨霞, 付敏, 王洋.甲状腺肿瘤微血管密度与超声表现的相关性[J]. 实用癌症杂志, 2019, 34(7): 1147-1149. |
26 |
TRIMBOLI P, CASTELLANA M, VIRILI C, et al. Performance of contrast-enhanced ultrasound (CEUS) in assessing thyroid nodules: A systematic review and meta-analysis using histological standard of reference[J].RadiolMed, 2020, 125(4): 406-415. doi:10.1007/s11547-019-01129-2
doi: 10.1007/s11547-019-01129-2 |
27 |
LIN Y, WU Y. Trends in incidence and overdiagnosis of thyroid cancer in China, Japan, and South Korea[J]. Cancer Sci, 2023, 114(10): 4052-4062. doi:10.1111/cas.15909
doi: 10.1111/cas.15909 |
28 |
WANG D, XING C, LIANG Y, et al. Ultrasound Imaging of Tumor Vascular CD93 with MMRN2 Modified Microbubbles for Immune Microenvironment Prediction[J]. Adv Mater, 2024, 36(18): e2310421. doi:10.1002/adma.202470134
doi: 10.1002/adma.202470134 |
29 |
DIAKOVAG B, WANG M, UNNIKRISHNAN S, et al. Preparation and Characterization of Targeted Microbubbles[J]. J Vis Exp, 2021(175). doi:10.3791/62370
doi: 10.3791/62370 |
30 |
MA J, WANG Y, XI X, et al. Contrast-enhanced ultrasound combined targeted microbubbles for diagnosis of highly aggressive papillary thyroid carcinoma[J]. Front Endocrinol (Lausanne), 2023, 14: 1052862. doi:10.3389/fendo.2023.1052862
doi: 10.3389/fendo.2023.1052862 |
31 |
XIE F, YAN L, LI Y M, et al. Targeting Diagnosis of High-Risk Papillary Thyroid Carcinoma Using Ultrasound Contrast Agent With the BRAF(V600E) Mutation: An Experimental Study[J]. J Ultrasound Med, 2022, 41(11): 2789-2802. doi:10.1002/jum.15967
doi: 10.1002/jum.15967 |
32 |
HE J, LIU Z, ZHU X, et al. Ultrasonic Microbubble Cavitation Enhanced Tissue Permeability and Drug Diffusion in Solid Tumor Therapy[J]. Pharmaceutics, 2022, 14(8):1642. doi:10.3390/pharmaceutics14081642
doi: 10.3390/pharmaceutics14081642 |
33 |
LIN Y C, CHEN H C, CHEN H K, et al. Ultrastructural Changes AssociatedWiththe Enhanced Permeability of the Round Window Membrane Mediated by Ultrasound Microbubbles[J]. Front Pharmacol, 2019, 10: 1580. doi:10.3389/fphar.2019.01580
doi: 10.3389/fphar.2019.01580 |
34 |
TZU-YIN W, WILSON K E, MACHTALER S, et al. Ultrasound and microbubble guided drug delivery: Mechanistic understanding and clinical implications[J]. Curr Pharm Biotechnol, 2013, 14(8): 743-752. doi:10.2174/1389201014666131226114611
doi: 10.2174/1389201014666131226114611 |
35 |
YANG Y U, BAI W, CHEN Y, et al. Optimization of low-frequency low-intensity ultrasound-mediated microvessel disruption on prostate cancer xenografts in nude mice using an orthogonal experimental design[J]. Oncol Lett, 2015, 10(5): 2999-3007. doi:10.3892/ol.2015.3716
doi: 10.3892/ol.2015.3716 |
36 |
LEI W, CHANG S, TIAN F, et al. Numerical simulation study on opening blood-brain barrier by ultrasonic cavitation[J]. Ultrason Sonochem, 2024, 109: 107005. doi:10.1016/j.ultsonch.2024.107005
doi: 10.1016/j.ultsonch.2024.107005 |
37 |
刘婷婷, 罗德钦, 邓铖, 等. 受体酪氨酸激酶样孤儿素受体2在甲状腺乳头状癌中的表达及临床意义[J]. 实用医学杂志, 2023, 39(8): 985-990. doi:10.3969/j.issn.1006-5725.2023.08.012
doi: 10.3969/j.issn.1006-5725.2023.08.012 |
38 |
MARANO F, FRAIRIA R, RINELLA L, et al.Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: Preclinical study in a xenograft mouse model[J]. Endocr Relat Cancer, 2017, 24(6): 275-286. doi:10.1530/erc-17-0045
doi: 10.1530/erc-17-0045 |
39 |
彭云, 温美玲, 吕云霞, 等. LncRNA DSCAM-AS1调节miR-150-5p/BRAF轴对甲状腺癌细胞恶性生物学行为的影响[J]. 实用医学杂志, 2023, 39(23): 3043-3050. doi:10.3969/j.issn.1006-5725.2023.23.004
doi: 10.3969/j.issn.1006-5725.2023.23.004 |
40 |
ZHU Y, ARKIN G, ZENG W, et al. Ultrasound image-guided cancer gene therapy using iRGD dual-targeted magnetic cationic microbubbles[J]. Biomed Pharmacother, 2024, 172: 116221. doi:10.1016/j.biopha.2024.116221
doi: 10.1016/j.biopha.2024.116221 |
41 |
CHEN X, ZHANG X, QIAN Y, et al. Ultrasound-targeted microbubble destruction-mediated miR-144-5p overexpression enhances the anti-tumor effect of paclitaxel on thyroid carcinoma by targeting STON2[J]. Cell Cycle, 2022, 21(10): 1058-1076. doi:10.1080/15384101.2022.2040778
doi: 10.1080/15384101.2022.2040778 |
42 |
ZHANG Y, QIU N, ZHANG Y, et al. Oxygen-carrying nanoparticle-based chemo-sonodynamic therapy for tumor suppression and autoimmunity activation[J]. Biomater Sci, 2021, 9(11): 3989-4004. doi:10.1039/d1bm00198a
doi: 10.1039/d1bm00198a |
43 |
XIANG Y, BERNARDS N, HOANG B, et al. Perfluorocarbon nanodroplets can reoxygenate hypoxic tumors in vivo without carbogen breathing[J]. Nanotheranostics, 2019, 3(2): 135-144. doi:10.7150/ntno.29908
doi: 10.7150/ntno.29908 |
44 |
WANG Q, SUI G, WU X, et al. A sequential targeting nanoplatform for anaplastic thyroid carcinoma theranostics[J]. Acta Biomater, 2020, 102: 367-383. doi:10.1016/j.actbio.2019.11.043
doi: 10.1016/j.actbio.2019.11.043 |
45 |
GUAN S, TENG D, WANG H, et al. Multifunctional Phase-Transition Nanoparticles for Effective Targeted Sonodynamic-Gene Therapy Against Thyroid Papillary Carcinoma[J]. Int J Nanomedicine, 2023, 18: 2275-2293. doi:10.2147/ijn.s394504
doi: 10.2147/ijn.s394504 |
[1] | 朱枫,李青,陈曦,贺洋,彭蕾. 细针穿刺活检联合高通量测序技术在甲状腺结节诊疗中的应用[J]. 实用医学杂志, 2024, 40(17): 2471-2476. |
[2] | 余江涛 王世杰 张高飞 段鑫鑫 霍青峰 张颂阳 郑守华 刘佩萸 . 血清甲状腺球蛋白、促甲状腺激素联合检测对行甲状腺全切术后未接受清甲治疗的分化型甲状腺癌患者复发的预测价值 [J]. 实用医学杂志, 2023, 39(9): 1159-1163. |
[3] | 钟华 曾梅青 周玉婷 何舜卿 卢秉慧 . 超声微泡造影剂携带pcDNA⁃STC1转染人宫颈癌细胞HeLa 的研究 [J]. 实用医学杂志, 2023, 39(8): 936-943. |
[4] | 彭云,温美玲,吕云霞,陈万志,何春,俞建平,丁振罗. LncRNA DSCAM-AS1调节miR-150-5p/BRAF轴对甲状腺癌细胞恶性生物学行为的影响[J]. 实用医学杂志, 2023, 39(23): 3043-3050. |
[5] | 李莉 王建军 曹俊宇 刘嘉 赖明华 张洁 郭永芹 孙建伟. 无充气腋窝入路与经胸乳入路腔镜甲状腺癌根治术的效果分析 [J]. 实用医学杂志, 2023, 39(13): 1669-1674. |
[6] | 廖淑婷 于向荣 . 能谱CT和人工智能在甲状腺癌诊断中的应用 [J]. 实用医学杂志, 2022, 38(2): 129-1133. |
[7] | 阚志文 黄子杰 崔亚云 钱立庭. 电化学方法检测血浆游离DNA甲基化水平与甲状腺癌诊断以及相关临床特征的关系 [J]. 实用医学杂志, 2021, 37(6): 792-796. |
[8] | 李文强 刘慧颖 任卫东. 干扰Hsa_circ_0023642调控miR⁃653对甲状腺癌细胞生物行为的影响 [J]. 实用医学杂志, 2021, 37(21): 2727-2732. |
[9] | 罗玲玲 夏俊勇 张然 卞岍雨 姚晓波. 分化型甲状腺癌患者131I治疗后不确定反应的影响因素分析 [J]. 实用医学杂志, 2021, 37(20): 2656-2659. |
[10] | 陈富坤, 邓智勇, 刘超, 吕娟, 贾莉, 杨传周, 刘鹏杰, 冯志平, .
circ_NEK6靶向miR⁃370⁃3p对分化型甲状腺癌131I耐受细胞恶性生物学行为的影响
[J]. 实用医学杂志, 2021, 37(2): 182-187. |
[11] | 陈佳琳, 林翠燕, 赖美燕, 林健如, 张慧, 过新民 . 超声微泡介导Caprin⁃1⁃KO转染对人肝癌HepG2细胞增殖、周期及cyclinD1、cyclinD2表达的影响 [J]. 实用医学杂志, 2021, 37(10): 1250-1256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||