实用医学杂志 ›› 2025, Vol. 41 ›› Issue (2): 294-299.doi: 10.3969/j.issn.1006-5725.2025.02.021
• 综述 • 上一篇
收稿日期:
2024-10-24
出版日期:
2025-01-25
发布日期:
2025-01-26
通讯作者:
刘水清
E-mail:liushuiqing062@tmmu.edu.cn
基金资助:
Xingyu WAN1,Nan LI1,Shuiqing LIU1(),Xi. ZHANG1,2
Received:
2024-10-24
Online:
2025-01-25
Published:
2025-01-26
Contact:
Shuiqing LIU
E-mail:liushuiqing062@tmmu.edu.cn
摘要:
急性髓系白血病(acute myeloid leukemia, AML)是一种高度异质性、多基因突变驱动的血液肿瘤,具有发病率高、致死率高的特点。间充质干细胞(mesenchymal stem cells, MSCs)是具有自我更新、多向分化潜能的多能干细胞,是骨髓微环境中的重要细胞成分。研究表明,MSCs通过转移线粒体、传递细胞外囊泡、促进自身成脂分化、分泌促癌蛋白等多种机制促进AML的发生发展。该文就MSCs在AML骨髓微环境中的作用作一综述,为靶向MSCs治疗AML的新策略提供参考。
中图分类号:
万星煜,李楠,刘水清,张曦. 间充质干细胞在急性髓系白血病骨髓微环境中的研究进展[J]. 实用医学杂志, 2025, 41(2): 294-299.
Xingyu WAN,Nan LI,Shuiqing LIU,Xi. ZHANG. Research advances of mesenchymal stem cells in the bone marrow microenvironment of acute myeloid leukemia[J]. The Journal of Practical Medicine, 2025, 41(2): 294-299.
表1
MSCs细胞外囊泡在AML细胞中的调控作用"
研究团队 | EVs来源 | 促癌/抑癌 | 作用机制 | 下游基因或通路 | 对AML的影响 |
---|---|---|---|---|---|
WU等[ | AML患者MSCs | 促癌 | 传递miR?10a | RPRD1A, Wnt/β?catenin | 促进细胞增殖,避免细胞凋亡,降低化疗敏感性 |
JI等[ | AML患者MSCs | 促癌 | 传递miR?26a?5p | GSK3β, Wnt/β?catenin | 促进细胞增殖,促进迁移侵袭 |
CHENG等[ | 正常MSCs细胞株 | 抑癌 | 传递miR?23b?5p | TRIM14, PI3K/AKT | 抑制细胞增殖,诱导细胞凋亡 |
ZHANG等[ | 正常MSCs细胞株 | 抑癌 | 传递miR?222?3p | IRF2, INPP4B | 抑制细胞增殖,诱导细胞凋亡 |
XU等[ | 正常MSCs细胞株 | 抑癌 | 传递hsa?miR?124?5p | SMC4 | 抑制细胞增殖,阻断细胞周期,诱导细胞凋亡 |
SUN等[ | 正常脐带血MSCs | 抑癌 | 传递NE | p38 MAPK?STAT3 | 阻断细胞周期,诱导细胞凋亡,促进细胞分化 |
1 |
WANG Y, CHANG Y J, CHEN J, et al. Consensus on the monitoring, treatment, and prevention of leukaemia relapse after allogeneic haematopoietic stem cell transplantation in China: 2024 update[J]. Cancer Lett, 2024, 605: 217264. doi:10.1016/j.canlet.2024.217264
doi: 10.1016/j.canlet.2024.217264 |
2 |
WANG X, HUANG R, WU W, et al. Amplifying STING activation by bioinspired nanomedicine for targeted chemo- and immunotherapy of acute myeloid leukemia[J]. Acta Biomaterialia, 2023, 157: 381-394. doi:10.1016/j.actbio.2022.11.007
doi: 10.1016/j.actbio.2022.11.007 |
3 |
KANDARAKOV O, BELYAVSKY A, SEMENOVA E. Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells[J]. Int J Mol Sci, 2022, 23(8): 4462. doi:10.3390/ijms23084462
doi: 10.3390/ijms23084462 |
4 |
WANG Y, FANG J, LIU B, et al. Reciprocal regulation of mesenchymal stem cells and immune responses[J]. Cell Stem Cell, 2022, 29(11): 1515-1530. doi:10.1016/j.stem.2022.10.001
doi: 10.1016/j.stem.2022.10.001 |
5 |
FAN S, SUN X, SU C, et al. Macrophages-bone marrow mesenchymal stem cells crosstalk in bone healing[J]. Front Cell Dev Biol, 2023, 11: 1193765. doi:10.3389/fcell.2023.1193765
doi: 10.3389/fcell.2023.1193765 |
6 |
FORTE D, GARCÍA-FERNÁNDEZ M, SÁNCHEZ-AGUILERA A, et al. Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy[J]. Cell Metab, 2020, 32(5): 829-843.e829. doi:10.1016/j.cmet.2020.09.001
doi: 10.1016/j.cmet.2020.09.001 |
7 |
MOSCHOI R, IMBERT V, NEBOUT M, et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy[J]. Blood, 2016, 128(2): 253-264. doi:10.1182/blood-2015-07-655860
doi: 10.1182/blood-2015-07-655860 |
8 |
MARLEIN C R, ZAITSEVA L, PIDDOCK R E, et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts[J]. Blood, 2017, 130(14): 1649-1660. doi:10.1182/blood-2017-03-772939
doi: 10.1182/blood-2017-03-772939 |
9 | SAITO K, ZHANG Q, YANG H, et al. Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition[J]. Blood Adv, 2021, 5(20): 4233-4255. |
10 |
YOU R, WANG B, CHEN P, et al. Metformin sensitizes AML cells to chemotherapy through blocking mitochondrial transfer from stromal cells to AML cells[J]. Cancer Lett, 2022, 532: 215582. doi:10.1016/j.canlet.2022.215582
doi: 10.1016/j.canlet.2022.215582 |
11 |
MISTRY J J, MOORE J A, KUMAR P, et al. Daratumumab inhibits acute myeloid leukaemia metabolic capacity by blocking mitochondrial transfer from mesenchymal stromal cells[J]. Haematologica, 2021, 106(2): 589-592. doi:10.3324/haematol.2019.242974
doi: 10.3324/haematol.2019.242974 |
12 |
MENDES M, MONTEIRO A C, NETO E, et al. Transforming the Niche: The Emerging Role of Extracellular Vesicles in Acute Myeloid Leukaemia Progression[J]. Int J Mol Sci, 2024, 25(8): 4430. doi:10.3390/ijms25084430
doi: 10.3390/ijms25084430 |
13 |
WU J, ZHANG Y, LI X, et al. Exosomes from bone marrow mesenchymal stem cells decrease chemosensitivity of acute myeloid leukemia cells via delivering miR-10a[J]. Biochem Biophys Res Commun, 2022, 622: 149-156. doi:10.1016/j.bbrc.2022.07.017
doi: 10.1016/j.bbrc.2022.07.017 |
14 |
JI D, HE Y, LU W, et al. Small-sized extracellular vesicles (EVs) derived from acute myeloid leukemia bone marrow mesenchymal stem cells transfer miR-26a-5p to promote acute myeloid leukemia cell proliferation, migration, and invasion[J]. Hum Cell, 2021, 34(3): 965-976. doi:10.1007/s13577-021-00501-7
doi: 10.1007/s13577-021-00501-7 |
15 |
CHENG H, DING J, TANG G, et al. Human mesenchymal stem cells derived exosomes inhibit the growth of acute myeloid leukemia cells via regulating miR-23b-5p/TRIM14 pathway[J]. Mol Med, 2021, 27(1): 128. doi:10.1186/s10020-021-00393-1
doi: 10.1186/s10020-021-00393-1 |
16 |
ZHANG F, LU Y, WANG M, et al. Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B[J]. Mol Cell Probes, 2020, 51: 101513. doi:10.1016/j.mcp.2020.101513
doi: 10.1016/j.mcp.2020.101513 |
17 |
XU Y C, LIN Y S, ZHANG L, et al. MicroRNAs of bone marrow mesenchymal stem cell-derived exosomes regulate acute myeloid leukemia cell proliferation and apoptosis[J]. Chin Med J (Engl), 2020, 133(23): 2829-2839. doi:10.1097/cm9.0000000000001138
doi: 10.1097/cm9.0000000000001138 |
18 |
SUN L, YANG N, CHEN B, et al. A novel mesenchymal stem cell-based regimen for acute myeloid leukemia differentiation therapy[J]. Acta Pharm Sin B, 2023, 13(7): 3027-3042. doi:10.1016/j.apsb.2023.05.007
doi: 10.1016/j.apsb.2023.05.007 |
19 |
SHAFAT M S, OELLERICH T, MOHR S, et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment[J]. Blood, 2017, 129(10): 1320-1332. doi:10.1182/blood-2016-08-734798
doi: 10.1182/blood-2016-08-734798 |
20 |
YE H, ADANE B, KHAN N, et al. Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche[J]. Cell Stem Cell, 2016, 19(1): 23-37. doi:10.1016/j.stem.2016.06.001
doi: 10.1016/j.stem.2016.06.001 |
21 |
YANG S, LU W, ZHAO C, et al. Leukemia cells remodel marrow adipocytes via TRPV4-dependent lipolysis[J]. Haematologica, 2020, 105(11): 2572-2583. doi:10.3324/haematol.2019.225763
doi: 10.3324/haematol.2019.225763 |
22 |
LIAO X, CAI D, LIU J, et al. Deletion of Mettl3 in mesenchymal stem cells promotes acute myeloid leukemia resistance to chemotherapy[J]. Cell Death Dis, 2023, 14(12): 796. doi:10.1038/s41419-023-06325-7
doi: 10.1038/s41419-023-06325-7 |
23 |
AZADNIV M, MYERS J R, MCMURRAY H R, et al. Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support[J]. Leukemia, 2020, 34(2): 391-403. doi:10.1038/s41375-019-0568-8
doi: 10.1038/s41375-019-0568-8 |
24 |
ÅBACKA H, MASONI S, POLI G, et al. SMS121, a new inhibitor of CD36, impairs fatty acid uptake and viability of acute myeloid leukemia[J]. Sci Rep, 2024, 14(1): 9104. doi:10.1038/s41598-024-58689-1
doi: 10.1038/s41598-024-58689-1 |
25 |
DE FREITAS F A, LEVY D, REICHERT C O, et al. Influence of Human Bone Marrow Mesenchymal Stem Cells Secretome from Acute Myeloid Leukemia Patients on the Proliferation and Death of K562 and K562-Lucena Leukemia Cell Lineages[J]. Int J Mol Sci, 2024, 25(9): 4748. doi:10.3390/ijms25094748
doi: 10.3390/ijms25094748 |
26 |
LU J, DONG Q, ZHANG S, et al. Acute myeloid leukemia (AML)-derived mesenchymal stem cells induce chemoresistance and epithelial-mesenchymal transition-like program in AML through IL-6/JAK2/STAT3 signaling[J]. Cancer Sci, 2023, 114(8): 3287-3300. doi:10.1111/cas.15855
doi: 10.1111/cas.15855 |
27 |
ZHANG Y, GUO H, ZHANG Z, et al. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia[J]. Exp Cell Res, 2022, 415(1): 113112. doi:10.1016/j.yexcr.2022.113112
doi: 10.1016/j.yexcr.2022.113112 |
28 |
HOU D, WANG B, YOU R, et al. Stromal cells promote chemoresistance of acute myeloid leukemia cells via activation of the IL-6/STAT3/OXPHOS axis[J]. Ann Transl Med, 2020, 8(21): 1346. doi:10.21037/atm-20-3191
doi: 10.21037/atm-20-3191 |
29 |
ANDERSON N R, SHETH V, LI H, et al. Microenvironmental CXCL12 deletion enhances Flt3-ITD acute myeloid leukemia stem cell response to therapy by reducing p38 MAPK signaling[J]. Leukemia, 2023, 37(3): 560-570. doi:10.1038/s41375-022-01798-5
doi: 10.1038/s41375-022-01798-5 |
30 |
VIÑADO A C, CALVO I A, CENZANO I, et al. The bone marrow niche regulates redox and energy balance in MLL: AF9 leukemia stem cells[J]. Leukemia, 2022, 36(8): 1969-1979. doi:10.1038/s41375-022-01601-5
doi: 10.1038/s41375-022-01601-5 |
31 |
YEHUDAI-RESHEFF S, ATTIAS-TURGEMAN S, SABBAH R, et al. Abnormal morphological and functional nature of bone marrow stromal cells provides preferential support for survival of acute myeloid leukemia cells[J]. Int J Cancer, 2019, 144(9): 2279-2289. doi:10.1002/ijc.32063
doi: 10.1002/ijc.32063 |
32 |
MODAK R V, DE OLIVEIRA REBOLA K G, MCCLATCHY J, et al. Targeting CCL2/CCR2 Signaling Overcomes MEK Inhibitor Resistance in Acute Myeloid Leukemia[J]. Clin Cancer Res, 2024, 30(10): 2245-2259. doi:10.1158/1078-0432.ccr-23-2654
doi: 10.1158/1078-0432.ccr-23-2654 |
33 |
AASEBØ E, BRENNER A K, HERNANDEZ-VALLADARES M, et al. Patient Heterogeneity in Acute Myeloid Leukemia: Leukemic Cell Communication by Release of Soluble Mediators and Its Effects on Mesenchymal Stem Cells[J]. Diseases, 2021, 9(4): 74. doi:10.3390/diseases9040074
doi: 10.3390/diseases9040074 |
34 |
LI H, WANG Y, YANG F, et al. Clonal MDS/AML cells with enhanced TWIST1 expression reprogram the differentiation of bone marrow MSCs[J]. Redox Biol, 2023, 67: 102900. doi:10.1016/j.redox.2023.102900
doi: 10.1016/j.redox.2023.102900 |
35 |
KARGAR-SICHANI Y, MOHAMMADI M H, AMIRI V, et al. Effect of Acute Myeloid Leukemia-derived Extracellular Vesicles on Bone Marrow Mesenchymal Stromal Cells: Expression of Poor Prognosis Genes[J]. Arch Med Res, 2023, 54(2): 95-104. doi:10.1016/j.arcmed.2022.12.008
doi: 10.1016/j.arcmed.2022.12.008 |
36 |
ZHANG L, ZHAO Q, CANG H, et al. Acute Myeloid Leukemia Cells Educate Mesenchymal Stromal Cells toward an Adipogenic Differentiation Propensity with Leukemia Promotion Capabilities[J]. Adv Sci (Weinh), 2022, 9(16): 2105811. doi:10.1002/advs.202270101
doi: 10.1002/advs.202270101 |
37 |
WACLAWICZEK A, HAMILTON A, ROUAULT-PIERRE K, et al. Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia[J]. J Clin Invest, 2020, 130(6): 3038-3050. doi:10.1172/jci133187
doi: 10.1172/jci133187 |
38 |
SCHELKER R C, KRATZER A, MÜLLER G, et al. Stanniocalcin 1 is overexpressed in multipotent mesenchymal stromal cells from acute myeloid leukemia patients[J]. Hematology, 2021, 26(1): 565-576. doi:10.1080/16078454.2021.1962048
doi: 10.1080/16078454.2021.1962048 |
39 |
CHANDRAN P, LE Y, LI Y, et al. Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors[J]. Leuk Res, 2015, 39(4): 486-493. doi:10.1016/j.leukres.2015.01.013
doi: 10.1016/j.leukres.2015.01.013 |
40 |
HORIGUCHI H, KOBUNE M, KIKUCHI S, et al. Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms[J]. Haematologica, 2016, 101(4): 437-447. doi:10.3324/haematol.2015.134932
doi: 10.3324/haematol.2015.134932 |
41 |
LAMBLE A J, LIND E F. Targeting the Immune Microenvironment in Acute Myeloid Leukemia: A Focus on T Cell Immunity[J]. Front Oncol, 2018, 8: 213. doi:10.3389/fonc.2018.00213
doi: 10.3389/fonc.2018.00213 |
42 |
WU L, LIN Q, MA Z, et al. Mesenchymal PGD(2) activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs[J]. Leukemia, 2020, 34(11): 3028-3041. doi:10.1038/s41375-020-0843-8
doi: 10.1038/s41375-020-0843-8 |
43 |
MANSOUR I, ZAYED R A, SAID F, et al. Indoleamine 2,3-dioxygenase and regulatory T cells in acute myeloid leukemia[J]. Hematology, 2016, 21(8): 447-453. doi:10.1080/10245332.2015.1106814
doi: 10.1080/10245332.2015.1106814 |
44 |
CORRADI G, BASSANI B, SIMONETTI G, et al. Release of IFNγ by Acute Myeloid Leukemia Cells Remodels Bone Marrow Immune Microenvironment by Inducing Regulatory T Cells[J]. Clin Cancer Res, 2022, 28(14): 3141-3155. doi:10.1158/1078-0432.ccr-21-3594
doi: 10.1158/1078-0432.ccr-21-3594 |
45 |
FERRELL P B, KORDASTI S. Hostile Takeover: Tregs Expand in IFNγ-Rich AML Microenvironment[J]. Clin Cancer Res, 2022, 28(14): 2986-2988. doi:10.1158/1078-0432.ccr-22-1030
doi: 10.1158/1078-0432.ccr-22-1030 |
46 | BORELLA G, DA ROS A, BORILE G, et al. Targeting the plasticity of mesenchymal stromal cells to reroute the course of acute myeloid leukemia[J]. Blood, 2021, 138(7): 557-570. |
47 |
侯勇哲, 张琴, 赵霄晨, 等. 间充质干细胞来源的胞外囊泡在急性肺损伤治疗中的研究进展[J]. 实用医学杂志, 2023, 39(3): 390-394. doi:10.3969/j.issn.1006-5725.2023.03.023
doi: 10.3969/j.issn.1006-5725.2023.03.023 |
48 |
YANG A, WANG X, JIN L,et al. Human umbilical cord mesenchymal stem cell exosomes deliver potent oncolytic reovirus to acute myeloid leukemia cells[J]. Virology, 2024, 598: 110171. doi:10.1016/j.virol.2024.110171
doi: 10.1016/j.virol.2024.110171 |
49 |
WEN J, CHEN Y, LIAO C, et al. Engineered mesenchymal stem cell exosomes loaded with miR-34c-5p selectively promote eradication of acute myeloid leukemia stem cells[J]. Cancer Lett, 2023, 575: 216407. doi:10.1016/j.canlet.2023.216407
doi: 10.1016/j.canlet.2023.216407 |
50 | 万星煜, 郭焕平, 黄瑞昊, 等. ADAR1介导的RNA编辑在血液肿瘤中的调控作用[J]. 生物化学与生物物理进展, 2024, 51(2): 300-308. |
51 | 游静茹, 杨璐, 崔小丽, 等. 急性髓系白血病中表观遗传学异常的研究进展[J]. 实用医学杂志, 2023, 39(10): 1316-1319. |
[1] | 曹慧玲,张洁,朱小飞,钱世宁,陈云峰. 川芎嗪预处理脐带间充质干细胞移植治疗缺血性脑卒中的作用机制[J]. 实用医学杂志, 2025, 41(2): 178-185. |
[2] | 费发珠,芦佳骏,张帅,李浩,任宾. 肝细胞癌免疫及靶向治疗在特殊人群中的临床应用进展[J]. 实用医学杂志, 2024, 40(6): 738-742. |
[3] | 巢素珍,周年,石心怡,周怡丽,夏俊杰,刘波,任明诗,李子涵. 芒果苷对同型半胱氨酸诱导骨髓间充质干细胞分化的影响[J]. 实用医学杂志, 2024, 40(23): 3284-3290. |
[4] | 罗青,黄金金,任婷婷,周瑞华,徐栋花,王振华,王国颖. 人脐带干细胞外泌体对人毛乳头细胞增殖的影响[J]. 实用医学杂志, 2024, 40(20): 2828-2834. |
[5] | 徐思诗,叶佩佩. BTK抑制剂治疗套细胞淋巴瘤的临床研究进展[J]. 实用医学杂志, 2024, 40(17): 2363-2368. |
[6] | 李玉婷,颜琦璐,宋启斌. 非小细胞肺癌表皮生长因子受体靶向治疗的研究进展[J]. 实用医学杂志, 2024, 40(15): 2166-2171. |
[7] | 黄山高,吴月玲,张颖. 瞄准未来:卵巢癌靶向治疗的新进展[J]. 实用医学杂志, 2024, 40(14): 1901-1907. |
[8] | 陈霞 武馨馨 刘星佑 陈鑫昊 黄尹霞 肖志原 贺继刚 . 过表达NKx2.5 CXCR 基因间充质干细胞增强SDF⁃1/ 4轴促归巢改善心梗心功能 [J]. 实用医学杂志, 2023, 39(6): 660-666. |
[9] | 侯勇哲, 张琴 赵霄晨 何苗 鱼玲玲, 白海 吴涛 . 间充质干细胞来源的胞外囊泡在急性肺损伤治疗中的研究进展 [J]. 实用医学杂志, 2023, 39(3): 390-394. |
[10] | 谢丹,欧阳石. 茵陈蒿汤协同脐带间充质干细胞所释放的外泌体对急性肝衰竭及肝细胞焦亡的影响[J]. 实用医学杂志, 2023, 39(23): 3034-3042. |
[11] | 王瑞娟,李超,段丽娟,尚淼,杨如玉. 氯普噻吨调节Akt/mTOR通路对人急性髓系白血病细胞自噬和凋亡的影响[J]. 实用医学杂志, 2023, 39(20): 2584-2590. |
[12] | 游静茹, 杨璐, 崔小丽 白海, . 急性髓系白血病中表观遗传学异常的研究进展 [J]. 实用医学杂志, 2023, 39(10): 1316-1319. |
[13] | 王晶 向健 胡淑芳 朱艳坤 钟玉钗. 急性髓系白血病患者外周血CD8+ T淋巴细胞中 MagT1水平监测的临床价值 [J]. 实用医学杂志, 2022, 38(8): 991-996. |
[14] | 周永新 翟文静 贾志强 赵晓光 王磊 方丽萍 翟莎菲 黄涛. miR⁃210⁃5p修饰间充质干细胞源外泌体促进大鼠脊髓损伤修复的机制 [J]. 实用医学杂志, 2022, 38(6): 711-714. |
[15] | 曹慧玲 汪小蓉 朱小飞 张洁 钱世宁. 川芎嗪对脐带间充质干细胞移植缺血性脑卒中迁移率的影响及作用机制 [J]. 实用医学杂志, 2022, 38(6): 726-737. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||