1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660
|
2 |
GU L, AI Q, CHENG Q, et al. Sarcomatoid variant urothelial carcinoma of the bladder: a systematic review and Meta-analysis of the clinicopathological features and survival outcomes[J]. Cancer Cell Int, 2020,20(1):550. doi:10.1186/s12935-020-01626-9
doi: 10.1186/s12935-020-01626-9
|
3 |
杨恒,张家伟,苏容万,等. 分腿俯卧位完成女性膀胱前壁肿瘤电切术十例报告[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(5): 454-455.
|
4 |
肖峰, 姜锡男, 舒露, 等. ECM1基因在膀胱癌中的表达及其与临床病理特征及预后关系[J]. 实用医学杂志, 2023, 20: 2629-2632,2637.
|
5 |
YAN H, BU P. Non-coding RNA in cancer[J]. Essays Biochem, 2021, 65(4): 625-639. doi:10.1042/ebc20200032
doi: 10.1042/ebc20200032
|
6 |
唐国军,洪余德,赵崇玉,等. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J/OL]. 中华腔镜泌尿外科杂志(电子版),2023,17(3):270-275.
|
7 |
NEMETH K, BAYRAKTAR R, FERRACIN M, et al. Non-coding RNAs in disease: from mechanisms to therapeutics[J]. Nat Rev Genet, 2024, 25(3): 211-232. doi:10.1038/s41576-023-00662-1
doi: 10.1038/s41576-023-00662-1
|
8 |
向威, 吕磊, 郑福鑫, 等. SLC9A3-AS1调控miR-148a-3p/ROCK1信号轴影响肾癌细胞生物学功能[J]. 华中科技大学学报(医学版), 2024, 53(2): 161-167.
|
9 |
MEHMANDAR-OSKUIE A, JAHANKHANI K, ROSTAMLOU A, et al. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies[J]. Biomed Pharmacother, 2023, 165: 115242. doi:10.1016/j.biopha.2023.115242
doi: 10.1016/j.biopha.2023.115242
|
10 |
CAO Y, ZOU Z, WU X, et al. LUCAT1 inhibits ferroptosis in bladder cancer by regulating the mRNA stability of STAT3[J]. Gene, 2024, 894: 147974. doi:10.1016/j.gene.2023.147974
doi: 10.1016/j.gene.2023.147974
|
11 |
WANG H, FENG Y, ZHENG X, et al. The Diagnostic and Therapeutic Role of snoRNA and lincRNA in Bladder Cancer[J]. Cancers (Basel), 2023, 15(4): 1007. doi:10.3390/cancers15041007
doi: 10.3390/cancers15041007
|
12 |
SHI Z L, ZHOU G Q, GUO J, et al. Identification of a Prognostic Colorectal Cancer Model Including LncRNA FOXP4-AS1 and LncRNA BBOX1-AS1 Based on Bioinformatics Analysis[J]. Cancer Biother Radiopharm. 2022, 37(10): 893-906. doi:10.1089/cbr.2020.4242
doi: 10.1089/cbr.2020.4242
|
13 |
YANG L, GE D, CHEN X, et al. FOXP4-AS1 participates in the development and progression of osteosarcoma by downregulating LATS1 via binding to LSD1 and EZH2[J]. Biochem Biophys Res Commun, 2018, 502(4): 493-500. doi:10.1016/j.bbrc.2018.05.198
doi: 10.1016/j.bbrc.2018.05.198
|
14 |
YAN J, ZHOU Q. LncRNA FOXP4-AS1 silencing inhibits metastasis and epithelial-mesenchymal transition in nasopharyngeal carcinoma via miR-136-5p/MAPK1[J]. Anticancer Drugs, 2023, 34(10): 1104-1111. doi:10.1097/cad.0000000000001510
doi: 10.1097/cad.0000000000001510
|
15 |
YE J, FU Y, WANG Z, et al. Long non-coding RNA FOXP4-AS1 facilitates the biological functions of hepatocellular carcinoma cells via downregulating ZC3H12D by mediating H3K27me3 through recruitment of EZH2[J]. Cell Biol Toxicol, 2022, 38(6): 1047-1062. doi:10.1007/s10565-021-09642-9
doi: 10.1007/s10565-021-09642-9
|
16 |
WU X, XIAO Y, ZHOU Y, et al. LncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of prostate cancer by sequestering miR-3184-5p to upregulate FOXP4[J]. Cell Death Dis, 2019, 10(7): 472. doi:10.1038/s41419-019-1699-6
doi: 10.1038/s41419-019-1699-6
|
17 |
LUO X, GAO Q, ZHOU T, et al. FOXP4-AS1 Inhibits Papillary Thyroid Carcinoma Proliferation and Migration Through the AKT Signaling Pathway[J]. Front Oncol, 2022,12: 900836. doi:10.3389/fonc.2022.900836
doi: 10.3389/fonc.2022.900836
|
18 |
BRIDGES M C, DAULAGALA A C, KOURTIDIS A. LNCcation: lncRNA localization and function[J]. J Cell Biol, 2021, 220(2): e202009045. doi:10.1083/jcb.202009045
doi: 10.1083/jcb.202009045
|
19 |
徐俐, 胡珊珊, 赵海明. LncRNA GNAS-AS1通过调节miR-449a/Notch1轴参与胃癌细胞的增殖和迁移[J]. 实用医学杂志, 2024,40 (4): 483-489.
|
20 |
DAI J, QU T, YIN D, et al. LncRNA LINC00969 promotes acquired gefitinib resistance by epigenetically suppressing of NLRP3 at transcriptional and posttranscriptional levels to inhibit pyroptosis in lung cancer[J]. Cell Death Dis, 2023, 14(5): 312. doi:10.1038/s41419-023-05840-x
doi: 10.1038/s41419-023-05840-x
|
21 |
LI D, DING Y, CHE J, et al. Tumor suppressive lncRNA MEG3 binds to EZH2 and enhances CXCL3 methylation in gallbladder cancer[J]. Neoplasma, 2022, 69(3): 538-549. doi:10.4149/neo_2022_210726n1046
doi: 10.4149/neo_2022_210726n1046
|
22 |
XIANG W, LYU L, HUANG T, et al. The long non-coding RNA SNHG1 promotes bladder cancer progression by interacting with miR-143-3p and EZH2[J]. J Cell Mol Med, 2020, 24(20): 11858-11873. doi:10.1111/jcmm.15806
doi: 10.1111/jcmm.15806
|
23 |
JUNG J, KIM J W, KIM G, et al. Low MST1/2 and negative LATS1/2 expressions are associated with poor prognosis of colorectal cancers[J]. Pathol Res Pract, 2023, 248: 154608. doi:10.1016/j.prp.2023.154608
doi: 10.1016/j.prp.2023.154608
|
24 |
CINAR B, ALP E, AL-MATHKOUR M, et al. The Hippo pathway: an emerging role in urologic cancers[J]. Am J Clin Exp Urol, 2021, 9(4): 301-317.
|
25 |
SADRI F, HOSSEINI SF, REZAEI Z, et al. Hippo-YAP/TAZ signaling in breast cancer: Reciprocal regulation of microRNAs and implications in precision medicine[J]. Genes Dis, 2023, 11(2): 760-771. doi:10.1016/j.gendis.2023.01.017
doi: 10.1016/j.gendis.2023.01.017
|
26 |
杨慧君,胡玉崇,王艳婷, 等. lncRNA OTUD6B-AS1通过靶向miR-183-5p/LATS2调控宫颈癌细胞的侵袭及凋亡[J]. 国际遗传学杂志, 2023, 46(2): 95-102.
|
27 |
MATSUDA T, MIYATA Y, NAKAMURA Y, et al. Pathological significance and prognostic role of LATS2 in prostate cancer[J]. Prostate, 2021, 81(15): 1252-1260. doi:10.1002/pros.24226
doi: 10.1002/pros.24226
|
28 |
DENG X, YE D, HUA K, et al. MIR22HG inhibits breast cancer progression by stabilizing LATS2 tumor suppressor[J]. Cell Death Dis, 2021, 12(9): 810. doi:10.1038/s41419-021-04105-9
doi: 10.1038/s41419-021-04105-9
|