1 |
CHEN Y, WANG X, WU Z, et al. Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration[J]. Peer J, 2023, 11:e14550. doi:10.7717/peerj.14550
doi: 10.7717/peerj.14550
|
2 |
VASEENON S, WEEKATE K, SRISUWAN T, et al. Observation of inflammation, oxidative stress, mitochondrial dynamics, and apoptosis in dental pulp following a diagnosis of irreversible pulpitis[J]. Eur Endod J, 2023, 8(2):148-155.
|
3 |
WANG X, CAI Y, ZHANG M, et al. Effect of biodentine on odonto/osteogenic differentiation of human dental pulp Stem Cells[J]. Bioengineering (Basel),2022,10(1):12. doi:10.3390/bioengineering10010012
doi: 10.3390/bioengineering10010012
|
4 |
YUAN S M, YANG X T, ZHANG S Y, et al. Therapeutic potential of dental pulp stem cells and their derivatives: Insights from basic research toward clinical applications[J]. World J Stem Cells, 2022, 14(7):435-452. doi:10.4252/wjsc.v14.i7.435
doi: 10.4252/wjsc.v14.i7.435
|
5 |
ITOH Y, SASAKI J I, HASHIMOTO M, et al. Pulp regeneration by 3-dimensional dental pulp stem cell constructs[J]. J Dent Res, 2018, 97(10):1137-1143. doi:10.1177/0022034518772260
doi: 10.1177/0022034518772260
|
6 |
张爱玲,李薇,郝祖慧,等. 干细胞治疗产品临床试验方案中受试者纳入、排除标准分析[J]. 中国临床药理学杂志,2023,39(14):2103-2106.
|
7 |
李永波,郭阶雨,孟丹. 化学重编程多能干细胞与再生医学[J].生命的化学,2023,43(7):1012-1019.
|
8 |
YANG D, ZHANG W, ZHANG H, et al. Progress, opportunity, and perspective on exosome isolation-efforts for efficient exosome-based theranostics[J]. Theranostics, 2020, 10(8):3684-3707. doi:10.7150/thno.41580
doi: 10.7150/thno.41580
|
9 |
王宏播,卞康晴,郭灵怡,等. 外泌体用于疾病诊疗和药物递送的研究进展[J]. 药学实践与服务,2023,41(5):265-272+320.
|
10 |
吴田方,戴东,王常元. circ-0008583结合EIF4A3蛋白促进肝癌细胞增殖并抑制其凋亡[J]. 实用医学杂志,2022,38(9):1088-1093. doi:10.3969/j.issn.1006-5725.2022.09.009
doi: 10.3969/j.issn.1006-5725.2022.09.009
|
11 |
CHEN L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020,21(8):475-490. doi:10.1038/s41580-020-0243-y
doi: 10.1038/s41580-020-0243-y
|
12 |
JIAO K, WALSH L J, IVANOVSKI S, et al. The emerging regulatory role of circular RNAs in periodontal tissues and cells[J]. Int J Mol Sci, 2021, 22(9):4636. doi:10.3390/ijms22094636
doi: 10.3390/ijms22094636
|
13 |
GE X, LI Z, ZHOU Z, et al. Circular RNA SIPA1L1 promotes osteogenesis via regulating the miR-617/Smad3 axis in dental pulp stem cells[J]. Stem Cell Res Ther, 2020, 11(1):364. doi:10.1186/s13287-020-01877-3
doi: 10.1186/s13287-020-01877-3
|
14 |
黄梦妤,刘生波. 牙髓再生技术应用于成熟恒牙的挑战及应对策略[J]. 口腔医学研究,2022,38(10):922-925.
|
15 |
浦蕊伊, 罗玉婷, 李蒙, 等. 牙髓血管再生及再血管化的研究进展[J]. 临床医学研究与实践,2021,6(17):192-194.
|
16 |
SHEN Z, KUANG S, ZHANG Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4):1113-1126. doi:10.1016/j.bioactmat.2020.07.002
doi: 10.1016/j.bioactmat.2020.07.002
|
17 |
GANESH V, SEOL D, GOMEZ-CONTRERAS P C, et al. Exosome-based cell homing and angiogenic differentiation for dental pulp regeneration[J]. Int J Mol Sci, 2022, 24(1):466. doi:10.3390/ijms24010466
doi: 10.3390/ijms24010466
|
18 |
SHIMIZU Y, TAKEDA-KAWAGUCHI T, KURODA I, et al. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis[J]. J Periodontal Res, 2022, 57(1):162-172. doi:10.1111/jre.12949
doi: 10.1111/jre.12949
|
19 |
ZENG J, HE K, MAI R, et al. Exosomes from human umbilical cord mesenchymal stem cells and human dental pulp stem cells ameliorate lipopolysaccharide-induced inflammation in human dental pulp stem cells[J]. Arch Oral Biol, 2022, 138:105411. doi:10.1016/j.archoralbio.2022.105411
doi: 10.1016/j.archoralbio.2022.105411
|
20 |
HUANG X, QIU W, PAN Y, et al. Exosomes from LPS-Stimulated hDPSCs activated the angiogenic potential of HUVECs in vitro[J]. Stem Cells Int, 2021, 2021:6685307. doi:10.1155/2021/6685307
doi: 10.1155/2021/6685307
|
21 |
PEI X, YE S, JIN G, et al. Overexpression of circRNA-001175 promotes proliferation and angiogenesis and inhibits apoptosis of the human umbilical vein endothelial cells (HUVECs) induced by high glucose[J]. Int J Clin Exp Pathol, 2018, 11(1):359-366.
|
22 |
QIU J, CHEN R, ZHAO L, et al. Circular RNA circGSE1 promotes angiogenesis in ageing mice by targeting the miR-323-5p/NRP1 axis[J]. Aging (Albany NY), 2022, 14(7):3049-3069. doi:10.18632/aging.203988
doi: 10.18632/aging.203988
|
23 |
GRIFFIOEN A W, DUDLEY A C. The rising impact of angiogenesis research[J]. Angiogenesis, 2022, 25(4):435-437. doi:10.1007/s10456-022-09849-2
doi: 10.1007/s10456-022-09849-2
|
24 |
GOSWAMI A G, BASU S, HUDA F, et al. An appraisal of vascular endothelial growth factor (VEGF): the dynamic molecule of wound healing and its current clinical applications[J]. Growth Factors, 2022, 40(3/4):73-88. doi:10.1080/08977194.2022.2074843
doi: 10.1080/08977194.2022.2074843
|
25 |
BOSMA E K, DARWESH S, ZHENG J Y, et al. Quantitative assessment of the apical and basolateral membrane expression of VEGFR2 and NRP2 in VEGF-A-stimulated cultured human umbilical vein endothelial cells[J]. J Histochem Cytochem, 2022, 70(8):557-569. doi:10.1369/00221554221115767
doi: 10.1369/00221554221115767
|
26 |
BALSER C, WOLF A, HERB M, et al. Co-inhibition of PGF and VEGF blocks their expression in mononuclear phagocytes and limits neovascularization and leakage in the murine retina[J]. J Neuroinflammation, 2019, 16(1):26. doi:10.1186/s12974-019-1419-2
doi: 10.1186/s12974-019-1419-2
|