1 |
LANKALA C R, YASIR M, ISHAK A, et al. Application of Nanotechnology for Diagnosis and Drug Delivery in Atherosclerosis: A New Horizon of Treatment[J]. Curr Probl Cardiol, 2023: 101671.
|
2 |
王单单. MR与多层螺旋CT对诊断颈动脉狭窄和粥样硬化斑块的临床应用价值分析[J]. 中外医学研究,2022,20(26):78-81.
|
3 |
SINGH S B, NG S J, LAU H C, et al. Emerging PET tracers in cardiac molecular imaging[J]. Cardiol Ther, 2023, 12(1): 85-99.
|
4 |
STOJKOVIC S, KAMPF S, HARKOT O, et al. Soluble ST2 in Patients with Carotid Artery Stenosis-Association with Plaque Morphology and Long-Term Outcome[J]. Int J Mol Sci, 2023, 24(10): 9007.
|
5 |
LI Q, CAI M, WANG H, et al. Diagnostic Performance of Contrast‐Enhanced Ultrasound and High‐Resolution Magnetic Resonance Imaging for Carotid Atherosclerotic Plaques: A Systematic Review and Meta‐Analysis[J]. J Ultrasound Med, 2022,42(3):739-749.
|
6 |
SONGCA S P. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections[J]. Int J Mol Sci, 2023, 24(13): 10875.
|
7 |
ZHANG X, CENTURION F, MISRA A, et al. Molecularly targeted nanomedicine enabled by inorganic nanoparticles for atherosclerosis diagnosis and treatment[J]. Adv Drug Deliv Rev, 2023,194:114709.
|
8 |
WU Q, PAN W, WU G, et al. CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques[J]. Atherosclerosis, 2023, 369: 17-26.
|
9 |
WANG Y, FENG Y, YANG X, et al. Diagnosis of Atherosclerotic Plaques Using Vascular Endothelial Growth Factor Receptor-2 Targeting Antibody Nano-microbubble as Ultrasound Contrast Agent [J]. Comput Math Methods Med, 2022, 2022:6524592.
|
10 |
LI P, JIN L, FENG L, et al. ICAM-1-carrying targeted nano contrast agent for evaluating inflammatory injury in rabbits with atherosclerosis [J]. Sci Rep, 2021, 11(1): 1-10.
|
11 |
FEIL S, STOWBUR D, SCHORG B F, et al. Noninvasive Detection of Smooth Muscle Cell-Derived Hot Spots to Study Atherosclerosis by PET/MRI in Mice[J]. Circul Res, 2023, 132(6): 747-750.
|
12 |
IMRAN M, JHA L A, HASAN N, et al. “Nanodecoys”-Future of drug delivery by encapsulating nanoparticles in natural cell membranes [J]. Int J Pharm, 2022: 121790.
|
13 |
BONNET S, PRéVOT G, MORNET S, et al. A nano-emulsion platform functionalized with a fully human scfv-fc antibody for atheroma targeting: Towards a theranostic approach to atherosclerosis [J]. Int J Mol Sci, 2021, 22(10): 5188.
|
14 |
ZHANG Y, YIN Y, ZHANG W, et al. Reactive oxygen species scavenging and inflammation mitigation enabled by biomimetic prussian blue analogues boycott atherosclerosis [J]. J Nanobiotechnology, 2021, 19(1): 1-13.
|
15 |
CHEN W, SCHILPEROORT M, CAO Y, et al. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis [J]. Nat Rev Cardiol, 2022, 19(4): 228-249.
|
16 |
WU M, LI X, GUO Q, et al. Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques [J]. Nanomedicine, 2021, 32: 102330.
|
17 |
JIANG Z, GENG X, SU L, et al. Neutrophil membrane camouflaged nanoprobes for NIR-II fluorescence imaging of inflamed, high-risk atherosclerotic plaques in mouse and rabbit models [J]. Mat Today Chem, 2022, 26: 101062.
|
18 |
WANG Q, LOU R, YIN Q, et al. A nano-detection system based on a chemical probe for early diagnosis of atherosclerosis in situ [J]. Analyst, 2021, 146(14): 4674-4682.
|
19 |
LIN L, WANG L V. The emerging role of photoacoustic imaging in clinical oncology[J]. Nat Rev Clin Oncol, 2022, 19(6): 365-384.
|
20 |
JIANG Y W, TANG W J, GAO G, et al. Lipid droplet-hitchhiking probe creates Trojan foam cells for fluorescence/photoacoustic imaging of atherosclerotic plaques[J]. Biosensors Bioelectron, 2022, 216: 114613.
|
21 |
DENG H, KONOPKA C J, PRABHU S, et al. Dextran-Mimetic Quantum Dots for Multimodal Macrophage Imaging In Vivo, Ex Vivo, and In Situ[J]. ACS Nano, 2022, 16(2): 1999-2012.
|
22 |
WU K, YAO C, YANG D, et al. A functional DNA nanosensor for highly sensitive and selective imaging of ClO- in atherosclerotic plaques [J]. Biosensors Bioelectron, 2022, 209: 114273.
|
23 |
OUYANG J, XIE A, ZHOU J, et al. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging[J]. Chem Soc Rev, 2022, 51(12):4996-5041.
|
24 |
SULTAN D, LI W, DETERING L, et al. Assessment of ultrasmall nanocluster for early and accurate detection of atherosclerosis using positron emission tomography/computed tomography [J]. Nanomedicine, 2021, 36: 102416.
|
25 |
LIU M, ZHANG Y, MA X, et al. Synthesis and Characterization of Fucoidan-Chitosan Nanoparticles Targeting P-Selectin for Effective Atherosclerosis Therapy[J]. Oxid Med Cell Longev, 2022, 2022: 8006642.
|
26 |
LI G, XU F, YANG B, et al. A nanotherapy responsive to the inflammatory microenvironment for the dual-targeted treatment of atherosclerosis[J]. Nanomedicine, 2022, 43: 102557.
|
27 |
HUANG X, LIU C, KONG N, et al. Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages[J]. Nat Protoc, 2022, 17(3): 748-780.
|
28 |
CHIN D D, POON C, WANG J, et al. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype [J]. Biomaterials, 2021, 273: 120810.
|
29 |
GUO L, MIAO Y, WANG Y, et al. Biomimetic Macrophage Membrane and Lipidated Peptide Hybrid Nanovesicles for Atherosclerosis Therapy [J]. Adv Func Mat, 2022: 2204822.
|
30 |
MA X, ZHANG T, LUO Z, et al. Functional nano-vector boost anti-atherosclerosis efficacy of berberine in Apoe (-/-) mice [J]. Acta Pharm Sin B, 2020, 10(9): 1769-1783.
|
31 |
WANG S, ZHOU Y, LIANG X, et al. Platinum-cerium bimetallic nano-raspberry for atherosclerosis treatment via synergistic foam cell inhibition and P2Y12 targeted antiplatelet aggregation [J]. Chem Engin J, 2022, 430: 132859.
|
32 |
SUN W, XU Y, YAO Y, et al. Self-oxygenation mesoporous MnO2 nanoparticles with ultra-high drug loading capacity for targeted arteriosclerosis therapy [J]. J Nanobiotechnol, 2022, 20(1): 1-17.
|
33 |
WU Z, WU R, LI X, et al. Multi‐pathway microenvironment regulation for atherosclerosis therapy based on beta‐cyclodextrin/l‐arginine/Au nanomotors with dual‐mode propulsion[J]. Small, 2022, 18(9): 2104120.
|
34 |
ZHOU J, NIU C, BIVING H, et al. Platelet membrane biomimetic nanoparticles combined with UTMD to improve the stability of atherosclerotic plaques [J]. Front Chem, 2022, 2022: 191.
|
35 |
YIN M, LIN J, YANG M, et al. Platelet membrane-cloaked selenium/ginsenoside Rb1 nanosystem as biomimetic reactor for atherosclerosis therapy [J]. Colloids Surf B Biointerfaces, 2022, 214: 112464.
|
36 |
ZHOU H, YOU P, LIU H, et al. Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux [J]. J Controll Rel, 2022, 341: 828-843.
|
37 |
PU H, YAO M, WU Z, et al. Regulation of the macrophage-related inflammatory microenvironment for atherosclerosis treatment and angiogenesis via anti-cytokine agents [J]. Nano Res, 2022, 2022: 1-13.
|
38 |
SALAHEIDIN T A, GODUGU K, BHARALI D J, et al. Novel oral nano-hepatic targeted anti-PCSK9 in hypercholesterolemia [J]. Nanomedicine, 2022, 40: 102480.
|