1 |
ZUBERI S M, WIRRELL E, YOZAWITZ E, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions [J]. Epilepsia, 2022, 63(6): 1349-1397. doi:10.1111/epi.17239
doi: 10.1111/epi.17239
|
2 |
赵家瑞, 龚玉来. 静息态功能磁共振成像在颞叶癫痫认知损害中的研究进展 [J]. 实用医学杂志, 2024, 20(40): 2954-2959. doi:10.3969/j.issn.1006-5725.2024.20.022
doi: 10.3969/j.issn.1006-5725.2024.20.022
|
3 |
LÖSCHER W, POTSCHKA H, SISODIYA S M, et al. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options [J]. Pharmacol Rev, 2020, 72(3): 606-638. doi:10.1124/pr.120.019539
doi: 10.1124/pr.120.019539
|
4 |
SCHEFFER I E, BERKOVIC S, CAPOVILLA G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology [J]. Epilepsia, 2017, 58(4): 512-521. doi:10.1111/epi.13709
doi: 10.1111/epi.13709
|
5 |
BOROWICZ-REUTT K, CZERNIA J, KRAWCZYK M. Genetic Background of Epilepsy and Antiepileptic Treatments [J]. Int J Mol Sci, 2023, 24(22):16280. doi:10.3390/ijms242216280
doi: 10.3390/ijms242216280
|
6 |
王一晰, 黄柏玮. 癫痫相关诱发机制及治疗方法的研究进展 [J]. 中国实用神经疾病杂志, 2024, 27(9): 1168-1172.
|
7 |
CONROY L R, HAWKINSON T R, YOUNG L E A, et al. Emerging roles of N-linked glycosylation in brain physiology and disorders [J]. Trends Endocrinol Metab, 2021, 32(12): 980-993. doi:10.1016/j.tem.2021.09.006
doi: 10.1016/j.tem.2021.09.006
|
8 |
FRANCISCO R, BRASIL S, POEJO J, et al. Congenital disorders of glycosylation (CDG): State of the art in 2022 [J]. Orphanet J Rare Dis, 2023, 18(1):329. doi:10.1186/s13023-023-02879-z
doi: 10.1186/s13023-023-02879-z
|
9 |
BERNARDO P, CUCCURULLO C, RUBINO M, et al. X-Linked Epilepsies: A Narrative Review [J]. Int J Mol Sci, 2024, 25(7):4110. doi:10.3390/ijms25074110
doi: 10.3390/ijms25074110
|
10 |
SHAH R, EKLUND E A, RADENKOVIC S, et al. ALG13-Congenital Disorder of Glycosylation (ALG13-CDG): Updated clinical and molecular review and clinical management guidelines [J]. Mol Genet Metab, 2024, 142(2):108472. doi:10.1016/j.ymgme.2024.108472
doi: 10.1016/j.ymgme.2024.108472
|
11 |
CHANTRET I, DANCOURT J, BARBAT A, et al. Two Proteins Homologous to the N- and C-terminal Domains of the Bacterial Glycosyltransferase Murg Are Required for the Second Step of Dolichyl-linked Oligosaccharide Synthesis in Saccharomyces cerevisiae [J]. J Biol Chem, 2005, 280(10): 9236-9242. doi:10.1074/jbc.m413941200
doi: 10.1074/jbc.m413941200
|
12 |
BICKEL T, LEHLE L, SCHWARZ M, et al. Biosynthesis of Lipid-linked Oligosaccharides in Saccharomyces cerevisiae [J]. J Biol Chem, 2005, 280(41): 34500-34506. doi:10.1074/jbc.m506358200
doi: 10.1074/jbc.m506358200
|
13 |
WANG C D, XU S, CHEN S, et al. An in vitro assay for enzymatic studies on human ALG13/14 heterodimeric UDP-N-acetylglucosamine transferase [J]. Front Cell Dev Biol, 2022, 10:1008078. doi:10.3389/fcell.2022.1008078
doi: 10.3389/fcell.2022.1008078
|
14 |
WANG X, WELDEGHIORGHIS T, ZHANG G, et al. Solution Structure of Alg13: The Sugar Donor Subunit of a Yeast N-Acetylglucosamine Transferase [J]. Structure, 2008, 16(6): 965-975. doi:10.1016/j.str.2008.03.010
doi: 10.1016/j.str.2008.03.010
|
15 |
SHAH R, JOHNSEN C, PLETCHER B A, et al. Long-term outcomes in ALG13-Congenital Disorder of Glycosylation [J]. Am J Med Genet A, 2023, 191(6): 1626-1631. doi:10.1002/ajmg.a.63179
doi: 10.1002/ajmg.a.63179
|
16 |
ESMAIL S, MANOLSON M F. Advances in understanding N-glycosylation structure, function, and regulation in health and disease [J]. Eur J Cell Biol, 2021, 100(7-8):151186. doi:10.1016/j.ejcb.2021.151186
doi: 10.1016/j.ejcb.2021.151186
|
17 |
HIRATA T, KIZUKA Y. N-Glycosylation [J]. Adv Exp Med Biol, 2021, 1325: 3-24. doi:10.1007/978-3-030-70115-4_1
doi: 10.1007/978-3-030-70115-4_1
|
18 |
PAPROCKA J, JEZELA-STANEK A, TYLKI-SZYMAŃSKA A, et al. Congenital Disorders of Glycosylation from a Neurological Perspective [J]. Brain Sci, 2021, 11(1):88. doi:10.3390/brainsci11010088
doi: 10.3390/brainsci11010088
|
19 |
GAUNITZ S, TJERNBERG L O, SCHEDIN‐WEISS S. The N‐glycan profile in cortex and hippocampus is altered in Alzheimer disease [J]. J Neurochem, 2020, 159(2): 292-304. doi:10.1111/jnc.15202
doi: 10.1111/jnc.15202
|
20 |
EXPOSITO-ALONSO D, RICO B. Mechanisms Underlying Circuit Dysfunction in Neurodevelopmental Disorders [J]. Annu Rev Genet, 2022, 56(1): 391-422. doi:10.1146/annurev-genet-072820-023642
doi: 10.1146/annurev-genet-072820-023642
|
21 |
TIMAL S, HOISCHEN A, LEHLE L, et al. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing [J]. Hum Mol Genet, 2012, 21(19): 4151-4161. doi:10.1093/hmg/dds123
doi: 10.1093/hmg/dds123
|
22 |
ALLEN A S, BERKOVIC S F, COSSETTE P, et al. De novo mutations in epileptic encephalopathies [J]. Nature, 2013, 501(7466): 217-221. doi:10.1038/nature12439
doi: 10.1038/nature12439
|
23 |
NAGARAJAN B, GOWDA V K, YOGANATHAN S, et al. Landscape of genetic infantile epileptic spasms syndrome — A multicenter cohort of 124 children from India [J]. Epilepsia Open, 2023, 8(4): 1383-1404. doi:10.1002/epi4.12811
doi: 10.1002/epi4.12811
|
24 |
FINNEGAN R, O'REGAN M, WHITE M, et al. Similarity of Phenotype in Three Male Patients With the c.320A > G Variant in ALG13: Possible Genotype-Phenotype Correlation [J]. Mol Genet Genomic Med, 2024, 12(9):e70010. doi:10.1002/mgg3.70010
doi: 10.1002/mgg3.70010
|
25 |
LIPIŃSKI P, BOGDAŃSKA A, SOCHA P, et al. Liver Involvement in Congenital Disorders of Glycosylation and Deglycosylation [J]. Front Pediatr, 2021, 9:696918. doi:10.3389/fped.2021.696918
doi: 10.3389/fped.2021.696918
|
26 |
PREM C, SULAIMAN A, ANGEZ M, et al. Early Infantile Epileptic Encephalopathy in asparagine-linked glycosylation thirteen (ALG13) gene defect and dramatic response with Ketogenic diet [J]. J Pak Med Assoc, 2023, 73(7): 1521-1523. doi:10.47391/jpma.6750
doi: 10.47391/jpma.6750
|
27 |
NG B G, EKLUND E A, SHIRYAEV S A, et al. Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions [J]. J Inherit Metab Dis, 2020, 43(6): 1333-1348. doi:10.1002/jimd.12290
doi: 10.1002/jimd.12290
|
28 |
FAROLFI M, CECHOVA A, ONDRUSKOVA N, et al. ALG3-CDG: A patient with novel variants and review of the genetic and ophthalmic findings [J]. BMC Ophthalmol, 2021, 21(1):249. doi:10.1186/s12886-021-02013-2
doi: 10.1186/s12886-021-02013-2
|
29 |
晏爽, 孙丹. ALG13基因变异致早发性婴儿癫痫性脑病一例[J]. 中国临床新医学, 2023, 16(3): 282-285. doi:10.3969/j.issn.1674-3806.2023.03.16
doi: 10.3969/j.issn.1674-3806.2023.03.16
|
30 |
郭淑芳, 何文, 敦硕, 等. ALG13基因突变致婴儿痉挛症1例及文献复习[J]. 发育医学电子杂志, 2018, 6(4): 242-246.
|
31 |
DATTA A N, BAHI‐BUISSON N, BIENVENU T, et al. The phenotypic spectrum of X‐linked, infantile onset ALG13‐related developmental and epileptic encephalopathy [J]. Epilepsia, 2021, 62(2): 325-334. doi:10.1111/epi.16761
doi: 10.1111/epi.16761
|
32 |
ALSHARHAN H, HE M, EDMONDSON A C, et al. ALG13 X‐linked intellectual disability: New variants, glycosylation analysis, and expanded phenotypes [J]. J Inherit Metab Dis, 2021, 44(4): 1001-1012. doi:10.1002/jimd.12378
doi: 10.1002/jimd.12378
|
33 |
FUNG C W, KWONG A K Y, WONG V C N. Gene panel analysis for nonsyndromic cryptogenic neonatal/infantile epileptic encephalopathy [J]. Epilepsia Open, 2017, 2(2): 236-243. doi:10.1002/epi4.12055
doi: 10.1002/epi4.12055
|
34 |
BISSAR‐TADMOURI N, DONAHUE W L, AL‐GAZALI L, et al. X chromosome exome sequencing reveals a novel ALG13 mutation in a nonsyndromic intellectual disability family with multiple affected male siblings [J]. Am J Med Genet A, 2013, 164(1): 164-169. doi:10.1002/ajmg.a.36233
doi: 10.1002/ajmg.a.36233
|
35 |
RAMÍREZ-MONTAÑO D, CANDELO E, PACHAJOA H. New variant in the ALG13 gene responsible for the congenital disorder of Is-type glycosylation in a male patient [J]. Andes Pediatr,2021, 5(92): 769-776.
|
36 |
GAO P, CHEN H, SUN Y, et al. ALG13-Related Epilepsy: Current Insights and Future Research Directions [J]. Neurochem Res, 2024, 50(1):60. doi:10.1007/s11064-024-04300-y
doi: 10.1007/s11064-024-04300-y
|
37 |
BRAUN M H, JOOMA N, SCANTLEBURY M H. Flashing lights and epileptic spasms: Should we be routinely performing intermittent photic stimulation in infants? [J]. Epileptic Disord, 2022, 24(1): 156-162. doi:10.1684/epd.2021.1370
doi: 10.1684/epd.2021.1370
|
38 |
PAPROCKA J, JEZELA-STANEK A, BOGUSZEWICZ Ł, et al. The First Metabolome Analysis in Children with Epilepsy and ALG13-CDG Resulting from c.320A > G Variant [J]. Children, 2021, 8(3):251. doi:10.3390/children8030251
doi: 10.3390/children8030251
|
39 |
CAI T, HUANG J, MA X, et al. Case Report: Identification of Two Variants of ALG13 in Families With or Without Seizure and Binocular Strabismus: Phenotypic Spectrum Analysis [J]. Front Genet, 2022, 13:892940. doi:10.3389/fgene.2022.892940
doi: 10.3389/fgene.2022.892940
|
40 |
MITUSIŃSKA K, GÓRA A, BOGDAŃSKA A, et al. Structural Analysis of the Effect of Asn107Ser Mutation on Alg13 Activity and Alg13-Alg14 Complex Formation and Expanding the Phenotypic Variability of ALG13-CDG [J]. Biomolecules, 2022, 12(3):398. doi:10.3390/biom12030398
doi: 10.3390/biom12030398
|
41 |
GAO P, WANG F, HUO J, et al. ALG13 Deficiency Associated with Increased Seizure Susceptibility and Severity [J]. Neuroscience, 2019, 409: 204-221. doi:10.1016/j.neuroscience.2019.03.009
doi: 10.1016/j.neuroscience.2019.03.009
|
42 |
HUO J, REN S, GAO P, et al. ALG13 participates in epileptogenesis via regulation of GABAA receptors in mouse models [J]. Cell Death Discov, 2020, 6(1):87. doi:10.1038/s41420-020-00319-6
doi: 10.1038/s41420-020-00319-6
|
43 |
LEE H F, CHI C S. Congenital disorders of glycosylation and infantile epilepsy [J]. Epilepsy Behav, 2023, 142:109214. doi:10.1016/j.yebeh.2023.109214
doi: 10.1016/j.yebeh.2023.109214
|