实用医学杂志 ›› 2025, Vol. 41 ›› Issue (19): 3106-3111.doi: 10.3969/j.issn.1006-5725.2025.19.022

• 医学检查与临床诊断 • 上一篇    

人工智能量化参数联合256层螺旋CT扫描对肺磨玻璃结节浸润程度的预测

王春1,王晓娣2,张海涛1,刘丹1()   

  1. 1.南京脑科医院胸科院区,呼吸内科,(江苏 南京 210000 )
    2.南京脑科医院胸科院区,放射科,(江苏 南京 210000 )
  • 收稿日期:2025-06-25 出版日期:2025-10-10 发布日期:2025-10-10
  • 通讯作者: 刘丹 E-mail:tita_2000@163.com
  • 基金资助:
    江苏省卫生健康委员会科研项目(ZDXKA2021229)

Predictive value of ai quantitative parameters combined with 256⁃slice spiral CT scans for the invasiveness of lung ground⁃glass nodules

Chun WANG1,Xiaodi WANG2,Haitao ZHANG1,Dan. LIU1()   

  1. *.Department of Respiratory,Thoracic Campus,Nanjing Brain Hospital,Nanjing 210000,Jiangsu,China
  • Received:2025-06-25 Online:2025-10-10 Published:2025-10-10
  • Contact: Dan. LIU E-mail:tita_2000@163.com

摘要:

目的 分析人工智能(AI)量化参数联合256层螺旋CT扫描对肺磨玻璃结节(GGN)浸润程度的预测价值。 方法 选取2021年5月至2024年7月南京脑科医院收治的经术后病理确诊的GGN患者98例,对其术前采取AI量化参数、256层螺旋CT扫描,并在病理检查后将非典型腺瘤样增生(AAH)、原位腺癌(AIS)、微浸润性腺癌(MIA)归为非浸润性病变组,浸润性腺癌(IAC)为浸润性病变组。对比两组AI量化参数联合256层螺旋CT扫描参数,分析影响GGN患者浸润程度的因素及预测价值。 结果 98例GGN患者中,AAH患者有29例,AIS患者有22例,MIA患者有19例,IAC患者有28例。浸润性病变组平均CT值、结节长径、最大面积、有空气支气管征、血管集束征、形状为不规则均高于非浸润性病变组(P < 0.05)。经二元logistic回归分析,有空气支气管征、血管集束征、形状为不规则、平均CT值、结节长径、最大面积可作为GGN患者浸润性病变的影响因素(P < 0.05)。经ROC曲线分析,有空气支气管征、血管集束征、形状为不规则、平均CT值、结节长径、最大面积诊断GGN患者浸润性病变的灵敏度、特异度高于单一检测。且有空气支气管征、血管集束征、形状为不规则、平均CT值、结节长径、最大面积联合预测GGN患者浸润性病变具有较高的价值(AUC为0.907)。 结论 AI量化参数联合256层螺旋CT扫描能够较好地预测GGN患者浸润程度,对临床术前判断肺GGN浸润程度具有一定的指导价值。

关键词: 人工智能量化参数, 256层螺旋CT扫描, 肺磨玻璃结节, 浸润程度

Abstract:

Objective To analyze the predictive value of artificial intelligence (AI) quantitative parameters combined with 256?slice spiral CT scans for assessing the invasiveness of lung ground?glass nodules (GGNs). Methods This study included 98 GGN patients diagnosed by postoperative pathology at the hospital from May 2021 to July 2024. Preoperative assessments involved AI quantitative parameters and 256?slice spiral CT scans. Patients were categorized into non?invasive (AAH, AIS, MIA) and invasive (IAC) groups based on pathology. AI parameters and CT scan results were compared to analyze factors influencing invasiveness and their predictive value. Results Among the 98 GGN patients, there were 29 AAH cases, 22 AIS, 19 MIA, and 28 IAC. The invasive group had higher average CT values, nodule long?axis diameter, maximum area, presence of air bronchogram, vascular clustering signs, and irregular shapes compared to the non?invasive group (P < 0.05). Binary logistic regression identified these six features (air bronchogram, vascular clustering, irregular shape, average CT value, nodule long diameter, and maximum area) as significant factors affecting GGN invasiveness (P < 0.05). ROC curve analysis showed that the combined detection of these parameters had higher sensitivity and specificity than single tests, with an AUC of 0.907, indicating a high predictive value for assessing GGN invasiveness. Conclusion The combination of AI quantitative parameters and 256?slice spiral CT scanning effectively predicts the invasiveness of GGN, providing significant clinical guidance for preoperative evaluation.

Key words: artificial intelligence quantitative parameters, 256-slice spiral CT scans, lung ground-glass nodules, invasiveness

中图分类号: