实用医学杂志 ›› 2021, Vol. 37 ›› Issue (20): 2675-2680.doi: 10.3969/j.issn.1006⁃5725.2021.20.021

• 医学检查与临床诊断 • 上一篇    下一篇

冠状动脉CT血管成像联合基于CT的血流储备分数预测阻塞性冠心病主要不良心脏事件的价值

庞智英1 杨飞2 苏亚英1 刘峰1 汤林梦1 崔书君2   

  1. 1 河北北方学院研究生院(河北张家口 075000);2 河北北方学院附属第一医院放射科(河北张家口 075000)

  • 出版日期:2021-10-25 发布日期:2021-10-25
  • 通讯作者: 崔书君 E⁃mail:hbzjkcsj@126.com
  • 基金资助:
    张家口市重点研发计划项目(编号:2021030D)

Impact of coronary CT angiography and CT⁃FFR on major adverse cardiac events in patients with obstructive coronary heart disease

PANG Zhiying*,YANG Fei,SU Yaying,LIU Feng,TANG Linmeng,CUI Shujun.   

  1. Graduate FacultyHebei North UniversityZhangjiakou 075000China 
  • Online:2021-10-25 Published:2021-10-25
  • Contact: CUI Shujun E⁃mail:hbzjkcsj@126.com

摘要:

目的 探讨基于 CT 的血流储备分数(CT derived fractional flow reserve,CT⁃FFR)、冠脉狭窄程度、临床心血管危险因素及三者联合应用对阻塞性冠心病(coronary artery disease,CAD)患者发生主要不良心脏事件(major adverse cardiac events,MACE)的预测价值。方法 回顾性收集曾行冠脉 CT 血管成像(coronary CT angiography,CCTA)检查的 133 例阻塞性 CAD 患者,随访 MACE 发生情况,应用 Cox 存回归模型分析临床心血管危险因素、冠脉狭窄程度及 CT⁃FFR MACE 发生风险的影响。建立 3 个预 MACE 的模型,采用 ROC 曲线下面积(AUC)评估 3 个模型对 MACE 的预测效能。结果 多因素 Cox 归分析显示,CT⁃FFR ≤ 0.80(HR = 4.41)、冠脉狭窄程度≥ 70%(HR = 3.65)、糖尿病(HR = 2.54)是阻塞 CAD 患者发生 MACE 的独立危险因素(均 P < 0.05)。CT⁃FFR+冠脉狭窄程度+临床心血管危险因素 的预测模型(AUC = 0.86)优于 CT⁃FFR 模型(AUC = 0.74)和 CT⁃FFR+冠脉狭窄程度的模型(AUC = 0.79), 差异有统计学意义(均 P < 0.001)。结论 CT⁃FFR 联合冠脉狭窄程度和临床心血管危险因素建立的 预测 CAD 患者 MACE 的预测模型具有良好的诊断效能,可为 CAD 患者及时进行临床干预及改善预后提供参考。

关键词:

CT 血流储备分数, 冠心病, 主要不良心脏事件, 冠状动脉血管造影术, 人工智能

Abstract:

Objective To explore the values of CT derived fractional flow reserve(CT⁃FFR),coronary artery stenosis and clinical cardiovascular risk factors and their combinationin the risk prediction of major adverse cardiac events(MACE)in patients with obstructive coronary artery disease(CAD). Methods A total of 133 patients with obstructive CAD who underwent coronary artery CT angiography examination were collected retrospectively. The occurrence of MACE was follow up. Cox proportional hazard regression model was used to analyze the role of clinical cardiovascular risk factors,coronary artery stenosis and CT ⁃ FFR in predicting the risk of MACE. Three models were established for predicting MACE and the under curve of the ROC was used to evaluate the ability of the three models in predicting MACE. Results Multivariate Cox regression analysiss showed that CT⁃FFR value ≤ 0.80(HR = 4.41),coronary artery stenosis ≥ 70%(HR = 3.65),diabetes mellitus(HR = 2.54)were indepen⁃ dent predictors for MACE in patients with obstructive CAD(P < 0.05). The model based on CT⁃FFR,coronary artery stenosis degree and clinical cardiovascular risk factors(AUC = 0.85)was better than the model based on CT⁃ FFR(AUC = 0.74)and the model based on CT⁃FFR and coronary artery stenosis degree(AUC = 0.79)(P < 0.001). Conclusion The combined prediction models of CT⁃FFR、coronary stenosis and clinical cardiovascular risk factors which were established to predict the risk of MACE in patients with CAD has good diagnostic power,providing reference information for the timely clinical intervention and improved prognosis of patients with CAD.

Key words:

CT derived fractional flow reserve, coronary heart disease, major adverse cardiac events, angiography, artificial intelligence