实用医学杂志 ›› 2020, Vol. 36 ›› Issue (23): 3246-3255.doi: 10.3969/j.issn.1006⁃5725.2020.23.016

• 临床研究 • 上一篇    下一篇

新生儿体重预测新方法的分析与应用

姚涛,白景鹤,陈静思,谢芯,刘欣瑜,邢军   

  1. 华北理工大学附属医院妇产科(河北唐山063000)
  • 出版日期:2020-12-10 发布日期:2020-12-23
  • 通讯作者: 邢军E⁃mail:mdxj2012@163.com
  • 基金资助:
    河北省医学科学研究重点课题计划(编号:ZD20140139);河北省医学适用跟踪项目计划(编号:GL201646)

Analysis and application of a new method to predict birth weight

YAO Tao,BAI Jinghe,CHEN Jingsi,XIE Xin,LIU Xinyu,XING Jun#br#   

  1. Department of Obstetric and Gynecology,the Affiliated Hospital of North China Univer⁃sity of Science and Technology,Tangshan 063000,China
  • Online:2020-12-10 Published:2020-12-23
  • Contact: XING Jun E⁃mail:mdxj2012@163.com

摘要:

目的 探讨预测本地区非肥胖、非糖尿病孕妇新生儿体重的回归公式在临床中应用。方法 按照纳入标准选取了2017年12月至2018年12月在华北理工大学附属医院分娩的86例孕妇,将新生儿体重平均值为两组间分组依据,将多项孕检指标分别比较其组间差异情况;寻找各指标与新生儿体重的相关性;将有意义的指标利用多重线性回归模型构建用于预测新生儿体重估计值的回归方程,并将该回归方程与其他方法进行比较;最后评估回归方程的预测能力。结果(1)不同新生儿体重的两组间资料如宫高、孕周、孕期增重、孕妇腹围、胎儿腹围、双顶径在两组间比较差异有统计学意义(P<0.05);(2)宫高(r = 0.496,P<0.05)、孕周(r = 0.366,P<0.05)、孕期增重(r = 0.288,P<0.05)、孕妇腹围(r = 0.380,P<0.05)、胎儿腹围(r = 0.660,P<0.05)、双顶径(r = 0.419,P<0.05)、股骨长(r = 0.522,P<0.05)与新生儿体重有相关性;(3)预测新生儿体重的最适线性回归方程(F = 22.7,P<0.005)为111.2X1+44.5X2+336.1X3⁃4454.7(X1、X2、X3分别为胎儿腹围、宫高、胎儿股骨长),可解释54%的新生儿体重变化;(4)该方程符合率显著高于其他方法(P<0.05),对于预测新生儿体重有较高准确性。结论 本研究提出的多重线性回归方程用于对新生儿出生体重的预测能力高于以往类似方法。

关键词: 新生儿体重, 多重线性回归, 孕检指标, 超声测量

Abstract:

Objective To study and establish a multiple linear regression model predicting neonatal weightof non⁃obesity and non⁃diabetic maternal. Methods A total of 86 pregnancy maternal were admitted to this hospitalfrom December 2017 to December 2018 were selected as research objects,and they were measured by variousindicator. Several indicators were studied between two groups divided by different average neonatal weight. Then wecan analyze relationship between serious of indicators and neonatal weight by Pearson correlation analysis. A multiplelinear regression model was established which can predict neonatal weight by clinic several indicators and ultrasonicindicators. Then we compared prediction capacity of the mode with other methods. Results There was statisticallysignificant difference(P < 0.05)that weight gains in pregnancy,gestational weeks,uterine height and maternalabdominal circumference,fetal circumference,biparietal diameter and femur length,which were increased alongwith birth. The correlation coefficients of the above indicator on neonatal weight is 0.288,0.366,0.496,0.380,0.419and 0.522,respectively(P < 0.05). The optimal linear regression model predicted the neonatal weight(F = 22.7,P < 0.005)was 111.2 X1 + 44.5 X2 + 336.1 X3 4454.7(X1,X2,X3 is respectively fetal circumference,fundal height,fetal femur length),which could predict 54% of the neonatal weight.This model of the coincidence rate was signifi⁃cantly higher than other methods(P < 0.05),with higher accuracy for predicting neonatal weight. Conclusion Theprediction regression model is able to predict neonatal weight and the formula is better predictor than other method.

Key words: neonatal weight, linear regression model, clinic indicator, ultrasonic