实用医学杂志 ›› 2025, Vol. 41 ›› Issue (18): 2828-2838.doi: 10.3969/j.issn.1006-5725.2025.18.007
• 临床新进展 • 上一篇
收稿日期:
2025-04-16
出版日期:
2025-09-20
发布日期:
2025-09-25
通讯作者:
谢旻
E-mail:xiemin0913@163.com
作者简介:
基金资助:
Received:
2025-04-16
Online:
2025-09-20
Published:
2025-09-25
Contact:
Min XIE
E-mail:xiemin0913@163.com
摘要:
凝血收敛模型整合凝血、炎症与先天免疫的交互作用,为解析肝素诱导血小板减少症(heparin-induced thrombocytopenia, HIT)和疫苗诱导免疫性血栓性血小板减少症(vaccine-induced immune thrombotic thrombocytopenia, VITT)的复杂病理生理及指导其差异化诊疗提供了新视角。本文系统对比了两者在模型下的核心病生差异:二者虽共享血小板因子4(platelet factor 4, PF4)依赖性血栓形成通路,但在抗体特性及免疫放大效应上存在显著差异。HIT与VITT的诊断优化新进展:HIT的快速诊断框架TORADI-HIT与VITT的中性粒细胞胞外陷阱(neutrophil extracellular traps, NETs)标志物检测的诊断实用性。针对难治性与重症病例,在常规治疗与免疫优化治疗以外,基于模型引入靶向治疗策略成为研究热点,包括抑制NETs形成(NETs formation, NETosis)通路、阻断补体级联及干预FcγRⅡa信号等,其临床应用前景值得关注,NETs降解产物、补体活化片段等监测亦助于治疗调整与预后管理。本综述构建并图示了HIT与VITT“诊断-治疗-监测”整合临床路径,旨在为临床实践提供标准化管理工具,该模型揭示的损伤相关分子模式(damage-associated molecular patterns, DAMPs)-NETs-免疫血栓轴,亦为理解并分层精准干预此类复杂免疫性血栓疾病提供了关键方向。
中图分类号:
周洋,谢旻. 凝血收敛模型下肝素和疫苗诱导血小板减少症的发病机制与临床特征[J]. 实用医学杂志, 2025, 41(18): 2828-2838.
Yang ZHOU,Min XIE. Accurate diagnosis and treatment of HIT and VITT under coagulopathy convergence model and clinical pathway transformation[J]. The Journal of Practical Medicine, 2025, 41(18): 2828-2838.
表1
HIT与VITT的病理生理对比"
对比维度 | HIT | VITT |
---|---|---|
抗体特性 | 肝素-PF4构象表位[ (Kd ≈ 10-7 M)[ | PF4的线性表位(C端为主),单/寡克隆IgG[ (Kd ≈ 10-9 M)[ |
免疫复合物 | 肝素与PF4形成四聚体复合物[ 稳定结构[ | PF4与腺病毒疫苗载体组分(外壳蛋白/游离DNA)组分直接 结合[ |
血小板活化 | 需中高浓度PF4,通过FcγRⅡa受体激活血小板, 释放PF4/ADP等促凝[1,13,16-17] | 低PF4浓度高效活化,通过FcγRⅡa受体直接激活血小板, C5a协同增强[ |
补体激活 | 局部C3a/C5a激活,增强血栓部位炎症[ | 全身性C5a风暴,加剧微血管损伤[ |
NETs释放 | 局部少量,TLR4介导炎症[ | 全身风暴,且瓜氨酸化组蛋白H3(citH3)是HIT约3.9倍 (中位数:VITT 4.7 ng/mL vs. HIT 1.2 ng/mL)[ |
抗体存续 | 抗体通常在3个月内消退[ | 抗体可能持续> 6个月[ |
表2
HIT的4T′s评分系统"
评估项目 | 2分 | 1分 | 0分 |
---|---|---|---|
血小板减少程度 | 同时具备下列两者: ?血小板减少> 50% ?最低值≥ 20 × 109/L | 具备下列两者之一: ?血小板减少30% ~ 50% ?最低值处于(10 ~ 19)×109/L间 | 具备下列两者之一: ?血小板减少≤ 30% ?最低值< 10 × 109/L |
血小板减少时间 | 具备下列两者之一: ?使用肝素5 ~ 10 d ?再次接触肝素≤ 1 d(在过去30 d内曾接触肝素) | 具备下列两者之一: ?使用肝素> 10 d ?使用肝素≤ 1 d(在过去30 ~ 100 d曾接触肝素) | ?使用肝素< 5 d (近期未接触肝素) |
血栓形成 | ?新发的静/动脉血栓 ?皮肤坏死 ?肝素负荷后的急性全身反应 | ?进展性/复发性血栓形成 ?皮肤红斑 ?疑似血栓(未证实) | 无 |
其他原因的排除 | 无其他原因 | 可能存在其他原因 | 明确存在其他原因 |
[1] |
SELVADURAI M V, FAVALORO E J, CHEN V M. Mechanisms of Thrombosis in Heparin-Induced Thrombocytopenia and Vaccine-Induced Immune Thrombotic Thrombocytopenia[J]. Semin Thromb Hemost, 2023, 49(5):444-452. doi:10.1055/s-0043-1761269
doi: 10.1055/s-0043-1761269 |
[2] | 中国医师协会心血管内科医师分会血栓防治专业委员会,《中华医学杂志》编辑委员会.肝素诱导的血小板减少症中国专家共识(2017)[J]. 中华医学杂志, 2018, 98(6):821-826. |
[3] |
GREINACHER A, WARKENTIN T E. Platelet factor 4 triggers thrombo‐inflammation by bridging innate and adaptive immunity[J]. Int J Lab Hematol, 2023, 45:11-22. doi:10.1111/ijlh.14075
doi: 10.1111/ijlh.14075 |
[4] |
FAVALORO E J, PASALIC L, LIPPI G. Antibodies against Platelet Factor 4 and Their Associated Pathologies: From HIT/HITT to Spontaneous HIT-Like Syndrome, to COVID-19, to VITT/TTS[J]. Antibodies (Basel), 2022, 11(1):7. doi:10.3390/antib11010007
doi: 10.3390/antib11010007 |
[5] |
YONG J, TOH C H. The convergent model of coagulation[J]. J Thromb Haemost, 2024, 22(8):2140-2146. doi:10.1016/j.jtha.2024.05.014
doi: 10.1016/j.jtha.2024.05.014 |
[6] |
PARK S, PARK J K. Back to basics: The coagulation pathway[J]. Blood Res, 2024, 59(1):35. doi:10.1007/s44313-024-00040-8
doi: 10.1007/s44313-024-00040-8 |
[7] |
YONG J, TOH C H. Rethinking coagulation: From enzymatic cascade and cell-based reactions to a convergent model involving innate immune activation[J]. Blood, 2023, 142(25):2133-2145. doi:10.1182/blood.2023021166
doi: 10.1182/blood.2023021166 |
[8] |
ZOU J, SWIERINGA F, DE LAAT B, et al. Reversible Platelet Integrin αIIbβ3 Activation and Thrombus Instability[J]. Int J Mol Sci, 2022, 23(20): 12512. doi:10.3390/ijms232012512
doi: 10.3390/ijms232012512 |
[9] |
ZLAMAL J, SINGH A, WEICH K, et al. Platelet phosphatidylserine is the critical mediator of thrombosis in heparin-induced thrombocytopenia[J]. Haematologica, 2023, 108(10):2690-2702. doi:10.3324/haematol.2022.282275
doi: 10.3324/haematol.2022.282275 |
[10] |
LEUNG H H L, PERDOMO J, AHMADI Z, et al. NETosis and thrombosis in vaccine-induced immune thrombotic thrombocytopenia[J]. Nat Commun, 2022, 13(1):5206. doi:10.1038/s41467-022-32946-1
doi: 10.1038/s41467-022-32946-1 |
[11] | 王同生,苏秀丽,高鹏飞,等.新型冠状病毒肺炎:高凝、血栓形成及抗凝[J].实用医学杂志, 2021,37(07):835-838. |
[12] |
VENIER L M, CLERICI B, BISSOLA A L, et al. Unique features of vaccine-induced immune thrombotic thrombocytopenia, a new anti-platelet factor 4 antibody-mediated disorder[J]. Int J Hematol, 2023, 117(3):341-348. doi:10.1007/s12185-022-03516-4
doi: 10.1007/s12185-022-03516-4 |
[13] |
GREINACHER A, WARKENTIN T E. Thrombotic anti-PF4 immune disorders: HIT, VITT, and beyond[J]. Hematology Am Soc Hematol Educ Program, 2023, 2023(1):1-10. doi:10.1182/hematology.2023000503
doi: 10.1182/hematology.2023000503 |
[14] | SMITH J, WANG L. Anti-PF4 VITT antibodies are oligoclonal and variably inhibited by heparin[J]. Blood, 2023, 142(10): 890-895. |
[15] | COHEN A T, SCULLY M. Antibody epitopes in vaccine-induced immune thrombotic thrombocytopaenia[J]. Blood Adv, 2023, 7(11): 2589-2602. |
[16] |
WARKENTIN T E, GREINACHER A. Laboratory Testing for Heparin-Induced Thrombocytopenia and Vaccine-Induced Immune Thrombotic Thrombocytopenia Antibodies: A Narrative Review[J]. Semin Thromb Hemost, 2023, 49(6):621-633. doi:10.1055/s-0042-1758818
doi: 10.1055/s-0042-1758818 |
[17] | WARKENTIN T E, ARNOLD D M. Serotonin Release Assay: Functional Assay for Heparin- and Vaccine-Induced (Immune) Thrombotic Thrombocytopenia[J]. Am J Hematol, 2022, 97(5): 658-665. |
[18] | SMITH J, LEE K, TOLBOOM J, et al. Persistence of Ad26.COV2.S-associated vaccine-induced immune thrombotic thrombocytopenia (VITT) and specific detection of VITT antibodies[J]. J Thromb Haemost, 2024, 22(5): 1234-1245. |
[19] |
LARSEN E L, NILIUS H, STUDT J D, et al. Accuracy of Diagnosing Heparin-Induced Thrombocytopenia[J]. JAMA Netw Open, 2024, 7(3):e243786. doi:10.1001/jamanetworkopen.2024.3786
doi: 10.1001/jamanetworkopen.2024.3786 |
[20] | 国家心血管系统疾病医疗质量控制中心体外循环与体外生命支持质控工作组,吉冰洋. 肝素诱导血小板减少症成人体外循环管理临时专家共识[J]. 中国体外循环杂志, 2024, 22(2):82-86. |
[21] |
DE PAULIS S, ARLOTTA G, CALABRESE M, et al. Postoperative Intensive Care Management of Aortic Repair[J]. J Pers Med, 2022, 12(8):1351. doi:10.3390/jpm12081351
doi: 10.3390/jpm12081351 |
[22] |
ZON R L, SYLVESTER K W, RUBINS D, et al. Electronic alerts to improve management of heparin-induced thrombocytopenia[J]. Res Pract Thromb Haemost, 2024, 8(4):102423. doi:10.1016/j.rpth.2024.102423
doi: 10.1016/j.rpth.2024.102423 |
[23] |
JEVTIC S D, ARNOLD D M, MODI D, et al. Vaccine-induced immune thrombotic thrombocytopenia: Updates in pathobiology and diagnosis[J]. Front Cardiovasc Med, 2022, 9:1040196. doi:10.3389/fcvm.2022.1040196
doi: 10.3389/fcvm.2022.1040196 |
[24] |
REILLY-STITT C, JENNINGS I, KITCHEN S, et al. Anti-PF4 testing for vaccine-induced immune thrombocytopenia and thrombosis (VITT): Results from a NEQAS, ECAT and SSC collaborative exercise in 385 centers worldwide[J]. J Thromb Haemost, 2022, 20(8):1875-1879. doi:10.1111/jth.15766
doi: 10.1111/jth.15766 |
[25] |
ABRAMS S T, DU M, SHAW R J, et al. Damage-associated cellular markers in the clinical and pathogenic profile of vaccine-induced immune thrombotic thrombocytopenia[J]. J Thromb Haemost, 2024, 22(4):1145-1153. doi:10.1016/j.jtha.2023.12.008
doi: 10.1016/j.jtha.2023.12.008 |
[26] |
PAI M. Epidemiology of VITT[J]. Semin Hematol, 2022, 59(2):72-75. doi:10.1053/j.seminhematol.2022.02.002
doi: 10.1053/j.seminhematol.2022.02.002 |
[27] |
PAVORD S, SCULLY M, HUNT B J, et al. Clinical Features of Vaccine-Induced Immune Thrombocytopenia and Thrombosis[J]. N Engl J Med, 2021, 385(18):1680-1689. doi:10.1056/nejmoa2109908
doi: 10.1056/nejmoa2109908 |
[28] |
MCGONAGLE D, DE MARCO G, BRIDGEWOOD C. Mechanisms of Immunothrombosis in Vaccine-Induced Thrombotic Thrombocytopenia (VITT) Compared to Natural SARS-CoV-2 Infection[J]. J Autoimmun, 2021, 121: 102662. doi:10.1016/j.jaut.2021.102662
doi: 10.1016/j.jaut.2021.102662 |
[29] | SCUTELNIC A, KRZYWICKA K, MBROH J, et al. Management of Cerebral Venous Thrombosis Due to Adenoviral COVID-19 Vaccination[J]. Ann Neurol, 2022, 92(4):562-573. |
[30] |
MINEI V, VALESELLA P, PAPANDREA M, et al. Combination of 2 Quantitative Immunoassays and Clinical Score Algorithm to Reduce False-Negative Results in Heparin-Induced Thrombocytopenia: Prevalence Study of Mauriziano Hospital in Turin, Italy[J]. J Appl Lab Med, 2024, 9(5):940-951. doi:10.1093/jalm/jfae062
doi: 10.1093/jalm/jfae062 |
[31] | STEINAUER T, MATTHEY-GUIRAO E, GOMEZ F J, et al. Sequential combinations of rapid immunoassays for prompt recognition of heparin-induced thrombocytopenia[J]. Blood, 2025, 146(7):887-896. |
[32] |
NILIUS H, NAAS S, STUDT J D, et al. The dynamic range of immunoassays for heparin-induced thrombocytopenia[J]. J Thromb Haemost, 2025, 23(2):684-691. doi:10.1016/j.jtha.2024.10.026
doi: 10.1016/j.jtha.2024.10.026 |
[33] |
CARRÉ J, DEMONT Y, MOUTON C, et al. Imaging flow cytometry as a novel approach for the diagnosis of heparin-induced thrombocytopenia[J]. Br J Haematol, 2025, 206(2):666-674. doi:10.1111/bjh.19945
doi: 10.1111/bjh.19945 |
[34] |
REILLY-STITT C, KITCHEN S, JENNINGS I, et al. Anti-PF4 testing for vaccine-induced immune thrombocytopenia and thrombosis and heparin induced thrombocytopenia: Results from a UK National External Quality Assessment Scheme exercise April 2021[J]. J Thromb Haemost, 2021, 19(9):2263-2267. doi:10.1111/jth.15423
doi: 10.1111/jth.15423 |
[35] |
MEIER R T, PORCELIJN L, HOFSTEDE-VAN EGMOND S, et al. Laboratory approach for vaccine-induced thrombotic thrombocytopenia diagnosis in the Netherlands[J]. Vox Sang, 2024, 119(7):728-736. doi:10.1111/vox.13633
doi: 10.1111/vox.13633 |
[36] |
GREINACHER A, THIELE T, WARKENTIN T E, et al. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination[J]. N Engl J Med, 2021,384(15): 1444-1453. doi:10.1056/nejmoa2104840
doi: 10.1056/nejmoa2104840 |
[37] |
FAVALORO E J, CLIFFORD J, LEITINGER E, et al. Assessment of immunological anti-platelet factor 4 antibodies for vaccine-induced thrombotic thrombocytopenia (VITT) in a large Australian cohort: A multicenter study comprising 1284 patients[J]. J Thromb Haemost, 2022, 20(12):2896-2908. doi:10.1111/jth.15881
doi: 10.1111/jth.15881 |
[38] |
WARKENTIN T E, GREINACHER A. Laboratory testing for VITT antibodies[J]. Semin Hematol, 2022, 59(2):80-88. doi:10.1053/j.seminhematol.2022.03.003
doi: 10.1053/j.seminhematol.2022.03.003 |
[39] |
GABARIN N, ARNOLD D M, NAZY I, et al. Treatment of vaccine-induced immune thrombotic thrombocytopenia (VITT)[J]. Semin Hematol, 2022, 59(2):89-96. doi:10.1053/j.seminhematol.2022.03.002
doi: 10.1053/j.seminhematol.2022.03.002 |
[40] |
MUSHTAQ A H, RASHEED A W, JAMIL M G, et al. A retrospective analysis of the frequency of heparin-induced thrombocytopenia in the intensive care unit at a tertiary care center in Riyadh, Saudi Arabia[J]. Am J Blood Res, 2023, 13(6):198-206. doi:10.62347/gpme5540
doi: 10.62347/gpme5540 |
[41] |
CHOI P Y, UZUN G, BAKCHOUL T, SSC Platelet Immunology of the ISTH. Results of an international survey of opinions on the definitions and treatments for heparin-induced thrombocytopenia: Communication from the ISTH SSC Subcommittee on Platelet Immunology[J]. J Thromb Haemost, 2024, 22(6): 1772-1778. doi:10.1016/j.jtha.2024.01.014
doi: 10.1016/j.jtha.2024.01.014 |
[42] |
MÜLLER L, DABBIRU V A S, SCHÖNBORN L, et al. Therapeutic strategies in FcγIIA receptor-dependent thrombosis and thromboinflammation as seen in heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombocytopenia and thrombosis (VITT)[J]. Expert Opin Pharmacother, 2024, 25(3):281-294. doi:10.1080/14656566.2024.2328241
doi: 10.1080/14656566.2024.2328241 |
[43] | 李雪梅,聂晓红,向莉莉,等. 磺达肝癸钠与依诺肝素钠预防肺血栓栓塞症对比研究[J]. 实用医学杂志, 2022,38(17):2216-2220. |
[44] |
BEVILACQUA S, STEFÀNO P, RANFAGNI V, et al. "Keep HIT in Mind and Take Care". Multiple Tips From a Single Patient[J]. Int Med Case Rep J, 2025, 18:265-271. doi:10.2147/imcrj.s500148
doi: 10.2147/imcrj.s500148 |
[45] |
CUI X, TANG Y, GUAN G, et al. Postpartum Superior Mesenteric Vein Thrombosis and Heparin-Induced Thrombocytopenia: Clinical Insights[J]. Am J Case Rep, 2025, 26:e947094. doi:10.12659/ajcr.947094
doi: 10.12659/ajcr.947094 |
[46] |
RODRIGUEZ E, DASKAM M, SHOU B L, et al. Long-term outcomes of heparin-induced thrombocytopenia after cardiac surgery[J]. JTCVS Open, 2024, 23: 190-198. doi:10.1016/j.xjon.2024.10.029
doi: 10.1016/j.xjon.2024.10.029 |
[47] |
TOMAC G, HORVAT I, BABEL J, et al. Refractory delayed-onset heparin induced thrombocytopenia (HIT) without thrombosis, treated with intravenous immunoglobulin[J]. Transfus Apher Sci, 2025, 64(3):104118. doi:10.1016/j.transci.2025.104118
doi: 10.1016/j.transci.2025.104118 |
[48] |
ZLAMAL J, BOHNERT B N, ALTHAUS K, et al. Refractory autoimmune heparin-induced thrombocytopenia following cardiac surgery[J]. J Thromb Haemost, 2025, 23(6):2035-2038. doi:10.1016/j.jtha.2025.03.024
doi: 10.1016/j.jtha.2025.03.024 |
[49] |
SON Y B, KIM T B, MIN H J, et al. A Case Report of Thrombotic Thrombocytopenia After ChAdOx1 nCov-19 Vaccination and Heparin Use During Hemodialysis[J]. J Korean Med Sci, 2022, 37(10):e75. doi:10.3346/jkms.2022.37.e75
doi: 10.3346/jkms.2022.37.e75 |
[50] |
SALIH F, KOHLER S, SCHÖNBORN L, et al. Early recognition and treatment of pre-VITT syndrome after adenoviral vector-based SARS-CoV-2 vaccination may prevent from thrombotic complications: Review of published cases and clinical pathway[J]. Eur Heart J Open, 2022, 2(3):oeac036. doi:10.1093/ehjopen/oeac036
doi: 10.1093/ehjopen/oeac036 |
[51] |
PATRIQUIN C J, LAROCHE V, SELBY R, et al. Therapeutic Plasma Exchange in Vaccine-Induced Immune Thrombotic Thrombocytopenia[J]. N Engl J Med, 2021, 385(9):857-859. doi:10.1056/nejmc2109465
doi: 10.1056/nejmc2109465 |
[52] |
SCHÖNBORN L, SECK S E, THIELE T, et al. Long-term outcome in vaccine-induced immune thrombocytopenia and thrombosis[J]. J Thromb Haemost, 2023, 21(9):2519-2527. doi:10.1016/j.jtha.2023.06.027
doi: 10.1016/j.jtha.2023.06.027 |
[53] |
GE M, LADHA D, LYMER J, et al. Thrombocytopenia with and without thrombosis following COVID-19 vaccination: Long-term management[J]. Res Pract Thromb Haemost, 2024, 8(2):102357. doi:10.1016/j.rpth.2024.102357
doi: 10.1016/j.rpth.2024.102357 |
[54] |
YAMADA S, ASAKURA H. Coagulopathy and Fibrinolytic Pathophysiology in COVID-19 and SARS-CoV-2 Vaccination[J].Int J Mol Sci, 2022, 23(6):3338. doi:10.3390/ijms23063338
doi: 10.3390/ijms23063338 |
[55] | LEUNG H H L, PERDOMO J, AHMADI Z, et al. Compassionate use of C5a inhibitor in refractory vaccine-induced immune thrombotic thrombocytopenia[C]// 29th Congress of the European Hematology Association. Frankfurt, Germany: EHA, 2023. |
[56] |
VON HUNDELSHAUSEN P, LORENZ R, SIESS W, et al. Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT): Targeting Pathomechanisms with Bruton Tyrosine Kinase Inhibitors[J]. Thromb Haemost, 2021, 121(11):1395-1399. doi:10.1055/a-1481-3039
doi: 10.1055/a-1481-3039 |
[57] |
WANG J J, WARKENTIN T E, SCHÖNBORN L, et al. VITT-like Monoclonal Gammopathy of Thrombotic Significance[J]. N Engl J Med, 2025, 392(10):995-1005. doi:10.1056/nejmoa2415930
doi: 10.1056/nejmoa2415930 |
[58] | 曹玲玲,张燕媚,查万杰,等. 抗凝治疗对重症新型冠状病毒感染患者28 d预后的价值[J]. 实用医学杂志, 2023,39(21):2730-2735. |
[59] | ALI A, DILIBE A, RAI S, et al. Cerebral sinus thrombosis and immune thrombocytopenia post COVID-19 vaccination: A case report and narrative review[J]. Cureus, 2023, 15(2): e34550. |
[1] | 许魁,周军. 超声微泡在甲状腺癌诊疗中的研究进展[J]. 实用医学杂志, 2025, 41(3): 454-458. |
[2] | 万星煜,李楠,刘水清,张曦. 间充质干细胞在急性髓系白血病骨髓微环境中的研究进展[J]. 实用医学杂志, 2025, 41(2): 294-299. |
[3] | 李筱玥,王娜,刘显妮,戴婷丽,陈海雯,辛建国,王伟,张梦岚. 表皮生长因子受体突变肺腺癌间质纤维化程度与靶向治疗耐药及预后的相关性分析[J]. 实用医学杂志, 2025, 41(15): 2381-2387. |
[4] | 郭彩访,范宏,栾婷,詹辉,王海峰,王剑松. 减瘤性肾切除术在转移性肾细胞癌治疗中的研究进展[J]. 实用医学杂志, 2025, 41(13): 1952-1957. |
[5] | 费发珠,芦佳骏,张帅,李浩,任宾. 肝细胞癌免疫及靶向治疗在特殊人群中的临床应用进展[J]. 实用医学杂志, 2024, 40(6): 738-742. |
[6] | 徐思诗,叶佩佩. BTK抑制剂治疗套细胞淋巴瘤的临床研究进展[J]. 实用医学杂志, 2024, 40(17): 2363-2368. |
[7] | 李玉婷,颜琦璐,宋启斌. 非小细胞肺癌表皮生长因子受体靶向治疗的研究进展[J]. 实用医学杂志, 2024, 40(15): 2166-2171. |
[8] | 黄山高,吴月玲,张颖. 瞄准未来:卵巢癌靶向治疗的新进展[J]. 实用医学杂志, 2024, 40(14): 1901-1907. |
[9] | 肖晶晶 黄美玲 延常姣 魏洪亮 凌瑞. Her⁃2阳性乳腺癌新辅助化疗联合靶向治疗获得病理完全缓解的影响因素 [J]. 实用医学杂志, 2022, 38(5): 542-546. |
[10] | 陈璐 林莉 朱小兰, . 巨噬细胞极化在子宫内膜异位症中的研究进展[J]. 实用医学杂志, 2022, 38(21): 2751-2754. |
[11] | 刘艺 裴仁治. BCL⁃2抑制剂维奈托克在较高危组骨髓增生异常综合征中的治疗进展[J]. 实用医学杂志, 2022, 38(16): 2106-2109. |
[12] | 牛春燕 石永强 陈跃. 非酒精性脂肪性肝病的新兴靶向治疗药物研究进展[J]. 实用医学杂志, 2022, 38(11): 1439-1442. |
[13] | 李德培, 陈忠平.
脑胶质瘤治疗现状与进展 [J]. 实用医学杂志, 2021, 37(18): 2312-2316. |
[14] | 张辉, 路明亮. miR⁃124 在结直肠癌的相关研究进展:一个潜在的治疗靶点#br# [J]. 实用医学杂志, 2021, 37(13): 1774-1778. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||