1 |
WANG L, YAO C Y, CHEN J Y, et al. γδ T Cell in Cerebral Ischemic Stroke: Characteristic, Immunity-Inflammatory Role, and Therapy[J]. Front Neurol, 2022, 31(13):842212.
|
2 |
MENSURADO S, BLANCO-DOMINGUEZ R, SILVA-SANTOS B. The emerging roles of γδ T cells in cancer immunotherapy[J].Nat Rev Clin Oncol, 2023,20(3):178-191. doi:10.1038/s41571-022-00722-1
doi: 10.1038/s41571-022-00722-1
|
3 |
JOUDI A M, REYES FLORES C P, SINGER B D. Epigenetic Control of Regulatory T Cell Stability and Function: Implications for Translation [J]. Front Immunol, 2022, 13:861607. doi:10.3389/fimmu.2022.861607
doi: 10.3389/fimmu.2022.861607
|
4 |
XU P, ZHANG F, CHANG M M, et al. Recruitment of gammadelta T cells to the lesion via the CCL2/CCR2 signaling after spinal cord injury [J]. J Neuroinflammation, 2021, 18(1): 64. doi:10.1186/s12974-021-02115-0
doi: 10.1186/s12974-021-02115-0
|
5 |
LIU L X, WANG H Y, CHEN X Y, et al. Gut microbiota: a new insight into neurological diseases[J]. Chin Med J (Engl), 2023,136(11):1261-1277. doi:10.1097/cm9.0000000000002212
doi: 10.1097/cm9.0000000000002212
|
6 |
LING Z X, LIU X, CHENG Y W, et al. Gut microbiota and aging[J]. Crit Rev Food Sci Nutr, 2022, 62(13):3509-3534. doi:10.1080/10408398.2020.1867054
doi: 10.1080/10408398.2020.1867054
|
7 |
CHEN L, WANG J. Gut microbiota and inflammatory bowel diseaset [J]. WIREs Mech Dis, 2022,14(2):e1540. doi:10.1002/wsbm.1540
doi: 10.1002/wsbm.1540
|
8 |
FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease [J]. Nat Rev Microbiol, 2021, 19(1): 55-71. doi:10.1038/s41579-020-0433-9
doi: 10.1038/s41579-020-0433-9
|
9 |
PARADA V D, DE LA FUENTE M K, LANDSKRON G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases [J]. Front Immunol, 2019, 10:277. doi:10.3389/fimmu.2019.01486
doi: 10.3389/fimmu.2019.01486
|
10 |
NEY L M, WIPPLINGER M, GROSSMANN M, et al. Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections[J]. Open Biol, 2023,13(3):230014. doi:10.1098/rsob.230014
doi: 10.1098/rsob.230014
|
11 |
杨艳青, 李灿委, 杨自忠, 等. 肠道菌群代谢物--短链脂肪酸的研究进展[J]. 实用医学杂志, 2022,38(14):1834-1837.
|
12 |
LIU X F, SHAO J H, LIAO Y T, et al. Regulation of short-chain fatty acids in the immune system[J]. Front Immunol, 2023,5(14):1186892.
|
13 |
RIBOT J C, LOPES N, SILVA-SANTOS B. γδ T cells in tissue physiology and surveillance [J]. Nat Rev Immunol, 2021, 21(4): 221-232. doi:10.1038/s41577-020-00452-4
doi: 10.1038/s41577-020-00452-4
|
14 |
CHEN D, GUO Y L, JIANG J H, et al.γδ T cell exhaustion: Opportunities for intervention[J].J Leukoc Biol, 2022,112(6):1669-1676. doi:10.1002/jlb.5mr0722-777r
doi: 10.1002/jlb.5mr0722-777r
|
15 |
ZHONG Q, ZHOU K, LIANG Q L, et al. Interleukin-23 Secreted by Activated Macrophages Drives gammadeltaT Cell Production of Interleukin-17 to Aggravate Secondary Injury After Intracerebral Hemorrhage [J]. J Am Heart Assoc, 2016, 5(10):e004340. doi:10.1161/jaha.116.004340
doi: 10.1161/jaha.116.004340
|
16 |
WANG J J, ZHU N N, SU X M, et al. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis[J].Cells, 2023,12(5):793. doi:10.3390/cells12050793
doi: 10.3390/cells12050793
|
17 |
ZHANG D, JIAN J P, ZHANG Y N, et al. Short-chain fatty acids in diseases[J]. Cell Commun Signal, 2023,21(1):212. doi:10.1186/s12964-023-01219-9
doi: 10.1186/s12964-023-01219-9
|
18 |
DAI Y, WEI T, SHEN Z, et al. Classical HDACs in the regulation of neuroinflammation [J]. Neurochem Int, 2021, 150:105182. doi:10.1016/j.neuint.2021.105182
doi: 10.1016/j.neuint.2021.105182
|
19 |
ZHANG S J, ZHAN L J, LI X, et al. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells[J]. Int J Biol Sci, 2021,17(13):3381-3400. doi:10.7150/ijbs.62001
doi: 10.7150/ijbs.62001
|
20 |
代仔怡, 武卫东, 梁继芳, 等. 短链脂肪酸平衡在脓毒症治疗中的研究进展[J]. 实用医学杂志, 2022,38(14):1834-1837. doi:10.3969/j.issn.1006-5725.2022.03.002
doi: 10.3969/j.issn.1006-5725.2022.03.002
|
21 |
BARNABEI L, LAPLANTINE E, MBONGO W, et al. NF-κB: At the Borders of Autoimmunity and Inflammation [J]. Front Immunol, 2021, 12:716469. doi:10.3389/fimmu.2021.716469
doi: 10.3389/fimmu.2021.716469
|
22 |
CAPECE D, VERZELLA D, FLATI I, et al. NF-κB: blending metabolism, immunity, and inflammation[J]. Trends Immunol, 2022,43(9):757-775. doi:10.1016/j.it.2022.07.004
doi: 10.1016/j.it.2022.07.004
|
23 |
SUN L, WANG L F, BETHANY B M, et al. IL-17: Balancing Protective Immunity and Pathogenesis[J]. J Immunol Res, 2023,12:3360310. doi:10.1155/2023/3360310
doi: 10.1155/2023/3360310
|
24 |
MILLS KHG. IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023,23(1):38-54. doi:10.1038/s41577-022-00746-9
doi: 10.1038/s41577-022-00746-9
|
25 |
LIU C, YIN Z, FENG T, et al. An integrated network pharmacology and RNA-Seq approach for exploring the preventive effect of Lonicerae japonicae flos on LPS-induced acute lung injury [J]. J Ethnopharmacol, 2021, 264:113364. doi:10.1016/j.jep.2020.113364
doi: 10.1016/j.jep.2020.113364
|
26 |
KIM D I, SONG M K, LEE K. Diesel Exhaust Particulates Enhances Susceptibility of LPS-Induced Acute Lung Injury through Upregulation of the IL-17 Cytokine-Derived TGF-beta(1)/Collagen I Expression and Activation of NLRP3 Inflammasome Signaling in Mice [J]. Biomolecules, 2021, 11(1):67. doi:10.3390/biom11010067
doi: 10.3390/biom11010067
|
27 |
LI T J, ZHAO L L, QIU J, et al. Interleukin-17 antagonist attenuates lung inflammation through inhibition of the ERK1/2 and NF-kappaB pathway in LPS-induced acute lung injury [J]. Mol Med Rep, 2017, 16(2): 2225-2232. doi:10.3892/mmr.2017.6837
doi: 10.3892/mmr.2017.6837
|