1 |
PIJLS N H, VAN G B, VAN D V P, et al. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow[J]. Circulation,1995, 92(11):3183-3193.
|
2 |
PIJLS N H, DE B B, PEELS K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses[J]. N Engl J Med, 1996, 334(26):1703-1708. doi:10.1056/nejm199606273342604
doi: 10.1056/nejm199606273342604
|
3 |
ZIMMERMANN F M, FERRARA A, JOHNSON N P, et al. Deferral vs.performance of ercutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial[J]. Eur Heart J, 2015, 36(45):3182-3188. doi:10.1093/eurheartj/ehv452
doi: 10.1093/eurheartj/ehv452
|
4 |
TONIONO P A, DE B B, PIJLS N H, et al.Fractional flow reserve versus angiography for guiding percutaneous coronary intervention[J]. N Engl J Med, 2009, 360(3):213-224. doi:10.1056/nejmoa0807611
doi: 10.1056/nejmoa0807611
|
5 |
PIJLS N H, FEARON W F, TONION P A, et al.Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study[J].J Am Coll Cardiol, 2010, 56(3):177-184.
|
6 |
LEE J M, KIM H K, PARK K H, et al.Fractional flow reserve versus angiography-guided strategy in acute myocardial infarction with multivessel disease: A randomized trial[J].Eur Heart J, 2023, 44(6):473-484. doi:10.1093/eurheartj/ehac763
doi: 10.1093/eurheartj/ehac763
|
7 |
TONION P A, DE B B, PIJLS N H, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention[J]. N Engl J Med, 2009, 360(3):213-224. doi:10.1056/nejmoa0807611
doi: 10.1056/nejmoa0807611
|
8 |
XAPLANTERIS P, FOURNIER S, PIJLS N H, et al.Five-year outcomes with pci guided by fractional flow reserve[J].N Engl J Med, 2018, 379(3):250-259. doi:10.1056/nejmoa1803538
doi: 10.1056/nejmoa1803538
|
9 |
NEUMANN F J, SOUSA-UVA M, AHLSSON A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization[J]. Eur Heart J, 2019, 40(2):87-165. doi:10.1093/eurheartj/ehy855
doi: 10.1093/eurheartj/ehy855
|
10 |
中华医学会心血管病学分会介入心脏病学组,中国医师协会心血管内科医师分会血栓防治专业委员会,中华心血管病杂志编辑委员会.中国经皮冠状动脉介入治疗指南(2016)[J].中华心血管病杂志, 2016, 44(5):382-400.
|
11 |
HU F, DING D, WESTRA J, LI Y,et al. Diagnostic accuracy of optical flow ratio: An individual patient-data meta-analysis[J]. Euro Interv, 2023, 19: e14-e54. doi:10.4244/eij-d-22-01098
doi: 10.4244/eij-d-22-01098
|
12 |
DING D, YU W, TANUZIN H, DE M G, et al. Optical flow ratio for assessing stenting result and physiological significance of residual disease[J]. Euro Interv, 2021, 17:e989-e998. doi:10.4244/eij-d-21-00185
doi: 10.4244/eij-d-21-00185
|
13 |
TU S, WESTRA J, YANG J,et al.Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: The international multicenter FAVOR pilot study[J]. JACC Cardiovasc Interv, 2016, 9(19):2024-2035. doi:10.1016/j.jcin.2016.07.013
doi: 10.1016/j.jcin.2016.07.013
|
14 |
HUANG J, EMORI H, DING D,et al.Diagnostic performance of intracoronaryopti cal coherence tomography-based versus angiography-based fractional flow reserve for the evaluation of coronary lesions[J]. Euro Interv, 2020, 16(7):568-576. doi:10.4244/eij-d-19-01034
doi: 10.4244/eij-d-19-01034
|
15 |
GUTIERREZ-CHICO J L, WYKRZYKOWSKA J, NUESCH E, et al. Vascular tissue reaction to acute malapposition in human coronary arteries: sequential assessment with optical coherence tomography[J]. Circ Cardiovasc Interv, 2012, 5(1): 20-29, S1-S8. doi:10.1161/circinterventions.111.965301
doi: 10.1161/circinterventions.111.965301
|
16 |
GUTIERREZ-CHICO J L, ALEGRIA-BARRERO E, TEIJEIRO-MESTRE R, et al. Optical coherence tomography: from research to practice[J]. Eur Heart J Cardiovasc Imaging, 2012, 13(5): 370-384. doi:10.1093/ehjci/jes025
doi: 10.1093/ehjci/jes025
|
17 |
ALI Z A, MAEHARA A, GENEREUX P, et al. ILUMIEN III: OPTIMIZE PCI Investigators. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): A randomised controlled trial[J]. Lancet, 2016, 388(10060): 2618-2628. doi:10.1016/s0140-6736(16)31922-5
doi: 10.1016/s0140-6736(16)31922-5
|
18 |
LI Y, GUTIERREZ-CHICO J L, HOLM N R, et al. Impact of side branch modeling on computation of endothelial shear stress in coronary artery disease: coronary tree reconstruction by fusion of 3D angiography and OCT[J]. J Am Coll Cardiol, 2015, 66(2): 125-135. doi:10.1016/j.jacc.2015.05.008
doi: 10.1016/j.jacc.2015.05.008
|
19 |
YU W, HUANG J, JIA D, et al. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity[J]. Euro Interv, 2019, 15(2):189-197. doi:10.4244/eij-d-19-00182
doi: 10.4244/eij-d-19-00182
|
20 |
TIAN F, YU W, HUANG J, et al.First presentation of integration of intravascular optical coherence tomography and computational fractional flow reserve[J]. Int J Cardiovasc Imaging, 2019, 35(4):601-602. doi:10.1007/s10554-018-1491-1
doi: 10.1007/s10554-018-1491-1
|
21 |
JIANG J, DU C, HU Y, et al. Diagnostic performance of computational fluid dynamics (CFD)-based fractional flow reserve (FFR) derived from coronary computed tomographic angiography (CCTA) for assessing functional severity of coronary lesions[J]. Quant Imaging Med Surg, 2023, 13(3):1672-1685. doi:10.21037/qims-22-521
doi: 10.21037/qims-22-521
|
22 |
XU B, TU S, QIAO S, et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis[J]. J Am Coll Cardiol, 2017, 70(25):3077-3087. doi:10.1016/j.jacc.2017.10.035
doi: 10.1016/j.jacc.2017.10.035
|
23 |
WESTRA J, ANDERSEN B K, CAMPO G, et al.Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: The FAVOR II Europe-Japan study[J]. J Am Heart Assoc, 2018, 7(14):e009603. doi:10.1161/jaha.118.009603
doi: 10.1161/jaha.118.009603
|
24 |
WESTRA J, TU S, WINTER S, et al. Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: The WIFI II study (wire-free functional imaging II)[J]. Circ Cardiovasc Imaging, 2018, 11(3):e007107. doi:10.1161/circimaging.117.007107
doi: 10.1161/circimaging.117.007107
|
25 |
XU B, TU S, SONG L, et al. Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): A multicentre, randomised,sham-controlled trial[J].Lancet, 2021, 398(10317):2149-2159. doi:10.1016/s0140-6736(21)02248-0
doi: 10.1016/s0140-6736(21)02248-0
|
26 |
CHEN H, LI B, XIAO Y, et al. Diagnostic efficacy of the optical flow ratio in patients with coronary heart disease: A meta-analysis[J]. PLoS One, 2023, 18(5):e0285508. doi:10.1371/journal.pone.0285508
doi: 10.1371/journal.pone.0285508
|
27 |
HONG H, JIA H, ZENG M, et al. Risk Stratification in Acute Coronary Syndrome by Comprehensive Morphofunctional Assessment With Optical Coherence Tomography[J]. JACC Asia, 2022, 2(4):460-472. doi:10.1016/j.jacasi.2022.03.004
doi: 10.1016/j.jacasi.2022.03.004
|
28 |
KAKIZAKI S, OTAKE H, SEIKE F, et al. Optical coherence tomography fractional flow reserve and cardiovascular outcomes in patients with acute coronary syndrome[J]. JACC Cardiovasc Interv, 2022, 15:2035-2048. doi:10.1016/j.jcin.2022.08.010
doi: 10.1016/j.jcin.2022.08.010
|
29 |
GAO X F, GE Z, KONG X Q, et al. 3-year outcomes of the ultimate trial comparing intravascular ultrasound versus angiography-guided drugeluting stent implantation[J]. JACC Cardiovasc Interv, 2021, 14:247-257. doi:10.1016/j.jcin.2020.10.001
doi: 10.1016/j.jcin.2020.10.001
|
30 |
CSANADI B, FERENCI T, FULOP G,et al. Clinical implications of fractional flow reserve measured immediately after percutaneous coronary intervention[J]. Cardiovasc Drugs Ther, 2023. doi: 10.1007/s10557-023-07437-0 .
doi: 10.1007/s10557-023-07437-0
|
31 |
STONE G W, MAEHARA A, ALI Z A, et al. Percutaneous coronary intervention for vulnerable coronary atherosclerotic plaque[J]. J Am Coll Cardiol, 2020, 76(20):2289-2301. doi:10.1016/j.jacc.2020.09.547
doi: 10.1016/j.jacc.2020.09.547
|
32 |
KEDHI E, BERTA B, ROLEDER T,et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve: the COMBINE OCT-FFR trial.[J] Eur Heart J, 2021, 42(45):4671-4679. doi:10.1093/eurheartj/ehab433
doi: 10.1093/eurheartj/ehab433
|
33 |
MA X, WANG Q, HU X, et al. Association of sdLDL-C with incident carotid plaques with stable and vulnerable morphology: A prospective cohort study[J]. Stroke, 2024, 55(3):576-585.
|
34 |
马丽娜,曹振华,杨冰. 小而密低密度脂蛋白胆固醇、CXC型趋化因子配体与糖尿病患者并发心血管疾病的相关性[J]. 实用医学杂志,2023,39(22):2953-2957.
|
35 |
CHEN Y, FU Y, WANG S, et al.Clinical significance of neutrophil gelatinase-associated lipocalin and sdLDL-C for coronary artery disease in patients with type 2 diabetes mellitus aged ≥ 65 years[J]. Cardiovasc Diabetol, 2022, 21(1):252. doi:10.1186/s12933-022-01668-5
doi: 10.1186/s12933-022-01668-5
|
36 |
巨名飞,刘超,刘佳梅,等. 急性冠状动脉综合征患者残余胆固醇水平与冠状动脉狭窄严重程度的相关性[J]. 实用医学杂志,2023,39(1):71-75.
|
37 |
TANIGAKI T, EMORI H, KAWASE Y, et al. QFR versus FFR derived from computed tomography for functional assessment of coronary artery stenosis[J]. JACC Cardiovasc Interv, 2019, 12(20):2050-2059. doi:10.1016/j.jcin.2019.06.043
doi: 10.1016/j.jcin.2019.06.043
|
38 |
ZENG X, HOLCK E N, WESTRA J, et al.Impact of coronary plaque morphology on the precision of computational fractional flow reserve derived from optical coherence tomography imaging[J]. Cardiovasc Diagn Ther, 2022, 12(2):155-165. doi:10.21037/cdt-21-505
doi: 10.21037/cdt-21-505
|
39 |
JIA H, ZHAO C, YU H, et al. Clinical performance of a novel hybrid IVUS-OCT system: A multicentre, randomised, non-inferiority trial (PANOVISION)[J]. Euro Interv, 2023, 19(4):e318-e320. doi:10.4244/eij-d-22-01058
doi: 10.4244/eij-d-22-01058
|
40 |
EMORI H, KUBO T, SHIONO Y, et al. Comparison of optical flow ratio and fractional flow ratio in stent-treated arteries immediately after percutaneous coronary intervention[J]. Circ J, 2020, 84(12):2253-2258. doi:10.1253/circj.cj-20-0661
doi: 10.1253/circj.cj-20-0661
|