1 |
FORD A C, MAHADEVA S, CARBONE M F, et al. Functional dyspepsia [J]. Lancet, 2020, 396(10263): 1689-1702. doi:10.1016/s0140-6736(20)30469-4
doi: 10.1016/s0140-6736(20)30469-4
|
2 |
吕咪,张坤漓,史中斐,等. 结合罗马Ⅳ标准探讨功能性消化不良、肠易激综合征重叠的现状[J]. 实用医学杂志,2021,37(09):1213-1216. doi:10.3969/j.issn.1006-5725.2021.09.024
doi: 10.3969/j.issn.1006-5725.2021.09.024
|
3 |
WANG X, LIU H, LI W, et al. Bibliometric analysis of functional dyspepsia research trends over the past 20 years [J]. Front Public Health, 2022, 10: 1019110. doi:10.3389/fpubh.2022.1019110
doi: 10.3389/fpubh.2022.1019110
|
4 |
LAN L, ZENG F, LIU G J, et al. Acupuncture for functional dyspepsia [J]. Cochrane Database Syst Rev, 2014, 10: CD008487. doi:10.1002/14651858.cd008487.pub2
doi: 10.1002/14651858.cd008487.pub2
|
5 |
VANUYTSEL T, BERCIK P, BOECKXSTAENS G. Understanding neuroimmune interactions in disorders of gut-brain interaction: from functional to immune-mediated disorders [J]. Gut, 2023, 72(4): 787-798. doi:10.1136/gutjnl-2020-320633
doi: 10.1136/gutjnl-2020-320633
|
6 |
HAN Y L, PENG X M, ZHANG H X, et al. Electroacupuncture Regulates TRPV1 through PAR2/PKC Pathway to Alleviate Visceral Hypersensitivity in FD Rats [J]. Evid Based Complement Alternat Med, 2021, 2021: 1975228. doi:10.1155/2021/1975228
doi: 10.1155/2021/1975228
|
7 |
ZHOU L, ZENG Y, ZHANG H, et al. The Role of Gastrointestinal Microbiota in Functional Dyspepsia: A Review [J]. Front Physiol, 2022, 13: 910568. doi:10.3389/fphys.2022.910568
doi: 10.3389/fphys.2022.910568
|
8 |
OKATA T, ASANUMA K, NAKAGAWA K, et al. The Impact of Duodenal Mucosal Vulnerability in the Development of Epigastric Pain Syndrome in Functional Dyspepsia [J]. Int J Mol Sci, 2022, 23(22): 13947. doi:10.3390/ijms232213947
doi: 10.3390/ijms232213947
|
9 |
CHENG J, GUO J, XU L, et al. The Overlap Subgroup of Functional Dyspepsia Exhibits More Severely Impaired Gastric and Autonomic Functions [J]. J Clin Gastroenterol, 2024, 58(1): 31-38. doi:10.1097/mcg.0000000000001802
doi: 10.1097/mcg.0000000000001802
|
10 |
IINO S, HORIGUCHI K, HORIGUCHI S, et al. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature [J]. Histochem Cell Biol, 2009, 131(6): 691-702. doi:10.1007/s00418-009-0580-6
doi: 10.1007/s00418-009-0580-6
|
11 |
LIN Q, QIN M, ZHAO S G, et al. The roles of PDGFRα signaling in the postnatal development and functional maintenance of the SMC-ICC-PDGFRα+ cell (SIP) syncytium in the colon [J]. Neurogastroenterol Motil, 2019, 31(5): e13568. doi:10.1111/nmo.13568
doi: 10.1111/nmo.13568
|
12 |
占煜,闻永,杜丽娟,等. 橙皮苷改善洛哌丁胺诱导便秘大鼠结肠SIP合胞体功能的研究[J]. 中国中西医结合杂志,2023,43(1):67-75.
|
13 |
SANDERS K M, BAKER S A, DRUMM B T, et al. Ca(2+) Signaling Is the Basis for Pacemaker Activity and Neurotransduction in Interstitial Cells of the GI Tract [J]. Adv Exp Med Biol, 2022, 1383: 229-241. doi:10.1007/978-3-031-05843-1_22
doi: 10.1007/978-3-031-05843-1_22
|
14 |
FANG X, NI K, GUO J, et al. FRET Visualization of Cyclic Stretch-Activated ERK via Calcium Channels Mechanosensation While Not Integrin β1 in Airway Smooth Muscle Cells [J]. Front Cell De Biol, 2022, 10: 847852. doi:10.3389/fcell.2022.847852
doi: 10.3389/fcell.2022.847852
|
15 |
MUSSA B M, KHAN A A, SRIVASTAVA A, et al. Differentiated PDGFRalpha-Positive Cells: A Novel In-Vitro Model for Functional Studies of Neuronal Nitric Oxide Synthase [J]. Int J Mol Sci, 2021, 22(7): 3514. doi:10.3390/ijms22073514
doi: 10.3390/ijms22073514
|
16 |
肖逸,周竟颖,尹鸿智,等. 电针“内关”“足三里”对功能性消化不良大鼠胃窦组织胃肠激素的影响[J]. 中国针灸, 2023, 43(12): 1435-1440.
|
17 |
潘小丽,周丽,王丹,等. 电针“足三里”对功能性消化不良大鼠胃排空反自噬信号通路的影响 [J]. 针刺研究, 2019, 44(7): 486-491.
|
18 |
刘昊,王馨嫒,李文静,等. 病证结合的功能性消化不良动物模型的研究进展[J]. 中国实验动物学报,2023,31(10):1342-1350. doi:10.3969/j.issn.1005-4847.2023.10.012
doi: 10.3969/j.issn.1005-4847.2023.10.012
|
19 |
HOU C, KIRCHNER T, SINGER M, et al. In vivo activity of a phospholipase C inhibitor, 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-di one (U73122), in acute and chronic inflammatory reactions [J]. J Pharmacol Exp Ther, 2004, 309(2): 697-704. doi:10.1124/jpet.103.060574
doi: 10.1124/jpet.103.060574
|
20 |
CHEN S H, ZHU L J, ZHI Y H, et al. Pitongshu alleviates the adverse symptoms in rats with functional dyspepsia through regulating visceral hypersensitivity caused by 5-HT overexpression [J]. Comb Chem High Throughput Screen, 2022, 26(7): 1424-1436. doi:10.2174/1386207325666220827152654
doi: 10.2174/1386207325666220827152654
|
21 |
WAUTERS L, TALLEY N J, WALKER M M, et al. Novel concepts in the pathophysiology and treatment of functional dyspepsia [J]. Gut, 2020, 69(3): 591-600. doi:10.1136/gutjnl-2019-318536
doi: 10.1136/gutjnl-2019-318536
|
22 |
金舒文,刘伟,刘嘉宝,等. 基于NGF/TrKA/TRPV1通路探讨电针改善功能性消化不良大鼠胃高敏感性[J]. 实用医学杂志,2023,39(22):2928-2933. doi:10.3969/j.issn.1006-5725.2023.22.012
doi: 10.3969/j.issn.1006-5725.2023.22.012
|
23 |
VANDENBERGHE A, SCHOL J, VAN DEN HOUTE K, et al. Current and emerging therapeutic options for the management of functional dyspepsia [J]. Expert opinion on pharmacotherapy, 2020, 21(3): 365-376. doi:10.1080/14656566.2019.1707805
doi: 10.1080/14656566.2019.1707805
|
24 |
ZHAO J, ZHAO L, ZHANG S, et al. Modified Liu-Jun-Zi decoction alleviates visceral hypersensitivity in functional dyspepsia by regulating EC cell-5HT3r signaling in duodenum [J]. J Ethnopharmacol, 2020, 250: 112468. doi:10.1016/j.jep.2019.112468
doi: 10.1016/j.jep.2019.112468
|
25 |
HOSIE S, ABO-SHABAN T, LEE C Y Q, et al. The Emerging Role of the Gut-Brain-Microbiota Axis in Neurodevelopmental Disorders [J]. Adv Exp Med Biol, 2022, 1383: 141-156. doi:10.1007/978-3-031-05843-1_14
doi: 10.1007/978-3-031-05843-1_14
|
26 |
VICENTINI F A, FAHLMAN T, RAPTIS S G, et al. New Concepts of the Interplay Between the Gut Microbiota and the Enteric Nervous System in the Control of Motility [J]. Adv Exp Med Biol, 2022, 1383: 55-69. doi:10.1007/978-3-031-05843-1_6
doi: 10.1007/978-3-031-05843-1_6
|
27 |
HWANG S J, DRUMM B T, KIM M K, et al. Calcium transients in intramuscular interstitial cells of Cajal of the murine gastric fundus and their regulation by neuroeffector transmission [J]. J Physiol, 2022, 600(20): 4439-4463. doi:10.1113/jp282876
doi: 10.1113/jp282876
|
28 |
PIERRE O, FOUCHARD M, BUSCAGLIA P, et al. Calcium Increase and Substance P Release Induced by the Neurotoxin Brevetoxin-1 in Sensory Neurons: Involvement of PAR2 Activation through Both Cathepsin S and Canonical Signaling [J]. Cells, 2020, 9(12): 2704. doi:10.3390/cells9122704
doi: 10.3390/cells9122704
|
29 |
KIM H J. A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles (J Physiol 2011;589[Pt 3]:697-710) [J]. J Neurogastroenterol Motil, 2011, 17(4): 425-426. doi:10.5056/jnm.2011.17.4.425
doi: 10.5056/jnm.2011.17.4.425
|
30 |
GáRRIZ A, AUBRY S, WATTIAUX Q, et al. Role of the Phospholipase C Pathway and Calcium Mobilization in Oxytocin-Induced Contraction of Lacrimal Gland Myoepithelial Cells [J]. Invest Opthalmol Vis Sci, 2021, 62(14): 25. doi:10.1167/iovs.62.14.25
doi: 10.1167/iovs.62.14.25
|
31 |
BAKER S A, HWANG S J, BLAIR P J, et al. Ca(2+) transients in ICC-MY define the basis for the dominance of the corpus in gastric pacemaking [J]. Cell Calcium, 2021, 99: 102472. doi:10.1016/j.ceca.2021.102472
doi: 10.1016/j.ceca.2021.102472
|
32 |
MARCHI S, GIORGI C, GALLUZZI L, et al. Ca2+ Fluxes and Cancer [J]. Mol Cell, 2020, 78(6): 1055-1069. doi:10.1016/j.molcel.2020.04.017
doi: 10.1016/j.molcel.2020.04.017
|