The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (5): 621-627.doi: 10.3969/j.issn.1006-5725.2025.05.001
• Comments • Next Articles
Received:
2024-12-05
Online:
2025-03-10
Published:
2025-03-20
Contact:
Xiangyu. ZHAO
E-mail:zhao_xy@bjmu.edu.cn
CLC Number:
Yiyang DING,Xiangyu. ZHAO. Opportunities and challenges of NK cell therapy[J]. The Journal of Practical Medicine, 2025, 41(5): 621-627.
1 |
ZHANG X, GUO Y, JI Y, et al. Cytokine Release Syndrome After Modified CAR-NK Therapy in an Advanced Non-small Cell Lung Cancer Patient: A Case Report [J]. Cell Transplant, 2022, 31: 9636897221094244. doi:10.1177/09636897221094244
doi: 10.1177/09636897221094244 |
2 |
DEPIL S, DUCHATEAU P, GRUPP S A, et al. ‘Off-the-shelf’ allogeneic CAR T cells: Development and challenges [J]. Nat Rev Drug Discov, 2020, 19(3): 185-199. doi:10.1038/s41573-019-0051-2
doi: 10.1038/s41573-019-0051-2 |
3 |
ZHAO X Y, JIANG Q, JIANG H, et al. Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute myeloid leukemia in vivo [J]. Eur J Immunol, 2020, 50(9): 1374-1385. doi:10.1002/eji.201948375
doi: 10.1002/eji.201948375 |
4 |
OBERSCHMIDT O, MORGAN M, HUPPERT V, et al. Development of Automated Separation, Expansion, and Quality Control Protocols for Clinical-Scale Manufacturing of Primary Human NK Cells and Alpharetroviral Chimeric Antigen Receptor Engineering [J]. Hum Gene Ther Methods, 2019, 30(3): 102-120. doi:10.1089/hgtb.2019.039
doi: 10.1089/hgtb.2019.039 |
5 |
WHALEN K A, RAKHRA K, MEHTA N K, et al. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors [J]. MAbs, 2023, 15(1): 2208697. doi:10.1080/19420862.2023.2208697
doi: 10.1080/19420862.2023.2208697 |
6 |
MENG F, ZHANG S, XIE J, et al. Leveraging CD16 fusion receptors to remodel the immune response for enhancing anti-tumor immunotherapy in iPSC-derived NK cells [J]. J Hematol Oncol, 2023, 16(1): 62. doi:10.1186/s13045-023-01455-z
doi: 10.1186/s13045-023-01455-z |
7 |
MANSOUR A G, TENG K Y, LI Z, et al. Off-the-shelf CAR-engineered natural killer cells targeting FLT3 enhance killing of acute myeloid leukemia [J]. Blood Adv, 2023, 7(20): 6225-6239. doi:10.1182/bloodadvances.2022007405
doi: 10.1182/bloodadvances.2022007405 |
8 |
LIU E, MARIN D, BANERJEE P, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors [J]. N Engl J Med, 2020, 382(6): 545-553. doi:10.1056/nejmoa1910607
doi: 10.1056/nejmoa1910607 |
9 |
CARUSO S, DE ANGELIS B, DEL BUFALO F, et al. Safe and effective off-the-shelf immunotherapy based on CAR.CD123-NK cells for the treatment of acute myeloid leukaemia [J]. J Hematol Oncol, 2022, 15(1): 163. doi:10.1186/s13045-022-01376-3
doi: 10.1186/s13045-022-01376-3 |
10 |
GANG M, MARIN N D, WONG P, et al. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas [J]. Blood, 2020, 136(20): 2308-2318. doi:10.1182/blood.2020006619
doi: 10.1182/blood.2020006619 |
11 |
ALBINGER N, BEXTE T, BUCHINGER L, et al. CRISPR/Cas9 Gene Editing of Immune Checkpoint Receptor NKG2A Improves the Efficacy of Primary CD33-CAR-NK Cells Against AML [J]. Blood, 2022, 140(): 4558-4559. doi:10.1182/blood-2022-169758
doi: 10.1182/blood-2022-169758 |
12 |
PEIPP M, KLAUSZ K, BOJE A S, et al. Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer [J]. Clin Exp Immunol, 2022, 209(1): 22-32. doi:10.1093/cei/uxac028
doi: 10.1093/cei/uxac028 |
13 |
WU S Y, FU T, JIANG Y Z, et al. Natural killer cells in cancer biology and therapy [J]. Mol Cancer, 2020, 19(1): 120. doi:10.1186/s12943-020-01238-x
doi: 10.1186/s12943-020-01238-x |
14 |
CHEN Y, LU D, CHUROV A, et al. Research Progress on NK Cell Receptors and Their Signaling Pathways [J]. Mediators Inflamm, 2020, 2020: 6437057. doi:10.1155/2020/6437057
doi: 10.1155/2020/6437057 |
15 |
ACHARYA S, BASAR R, DAHER M, et al. CD28 Costimulation Augments CAR Signaling in NK Cells via the LCK/CD3ζ/ZAP70 Signaling Axis [J]. Cancer Discov, 2024, 14(10): 1879-1900. doi:10.1158/2159-8290.cd-24-0096
doi: 10.1158/2159-8290.cd-24-0096 |
16 |
CHANG Y, JIN G, LUO W, et al. Engineered human pluripotent stem cell-derived natural killer cells with PD-L1 responsive immunological memory for enhanced immunotherapeutic efficacy [J]. Bioact Mater, 2023, 27: 168-180. doi:10.1016/j.bioactmat.2023.03.018
doi: 10.1016/j.bioactmat.2023.03.018 |
17 |
ZHUANG X, LONG E O. NK Cells Equipped With a Chimeric Antigen Receptor That Overcomes Inhibition by HLA Class I for Adoptive Transfer of CAR-NK Cells [J]. Front Immunol, 2022, 13: 840844. doi:10.3389/fimmu.2022.840844
doi: 10.3389/fimmu.2022.840844 |
18 |
HUANG Y, ZENG J, LIU T, et al. DNAM1 and 2B4 Costimulatory Domains Enhance the Cytotoxicity of Anti-GPC3 Chimeric Antigen Receptor-Modified Natural Killer Cells Against Hepatocellular Cancer Cells in vitro [J]. Cancer Manag Res, 2020, 12: 3247-3255. doi:10.2147/cmar.s253565
doi: 10.2147/cmar.s253565 |
19 |
ZHAO X Y, XU Z L, MO X D, et al. Preemptive donor-derived anti-CD19 CAR T-cell infusion showed a promising anti-leukemia effect against relapse in MRD-positive B-ALL after allogeneic hematopoietic stem cell transplantation [J]. Leukemia, 2022, 36(1): 267-270. doi:10.1038/s41375-021-01351-w
doi: 10.1038/s41375-021-01351-w |
20 |
DIORIO C, TEACHEY D T, GRUPP S A. Allogeneic chimeric antigen receptor cell therapies for cancer: progress made and remaining roadblocks [J]. Nat Rev Clin Oncol, 2024, 22(1): 10-27. doi:10.1038/s41571-024-00959-y
doi: 10.1038/s41571-024-00959-y |
21 | 石亚群, 俞妍慧. 嵌合抗原受体T细胞治疗致细胞因子释放综合征与神经毒性的现状及展望 [J]. 实用医学杂志, 2021, 37(2): 268-271. |
22 |
DULéRY R, PICCINELLI S, BEG M S, et al. Haploidentical hematopoietic cell transplantation as a platform for natural killer cell immunotherapy [J]. Am J Hematol, 2024, 99(12): 2340-2350. doi:10.1002/ajh.27471
doi: 10.1002/ajh.27471 |
23 |
BERRIEN-ELLIOTT M M, BECKER-HAPAK M, CASHEN A F, et al. Systemic IL-15 promotes allogeneic cell rejection in patients treated with natural killer cell adoptive therapy [J]. Blood, 2022, 139(8): 1177-1183. doi:10.1182/blood.2021011532
doi: 10.1182/blood.2021011532 |
24 |
RUBNITZ J E, INABA H, RIBEIRO R C, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia [J]. J Clin Oncol, 2010, 28(6): 955-959. doi:10.1200/jco.2009.24.4590
doi: 10.1200/jco.2009.24.4590 |
25 |
QIAN W, LEI W, LIU H, et al. Safety and Feasibility of a 41BB Co-Stimulated CD19 CAR-NK Cell Therapy in Refractory/Relapsed Large B-Cell Lymphoma [J]. Blood, 2024, 144: 7209. doi:10.1182/blood-2024-202988
doi: 10.1182/blood-2024-202988 |
26 |
DARRAH J M, VARADARAJAN I, MEHTA A, et al. Efficacy and Safety of TAK-007, Cord Blood-Derived CD19 CAR-NK Cells, in Adult Patients with Relapsed/Refractory (R/R) B-Cell Non-Hodgkin Lymphoma (NHL) [J]. Blood, 2024, 144: 95. doi:10.1182/blood-2024-194807
doi: 10.1182/blood-2024-194807 |
27 |
BACHANOVA V, GHOBADI A, PATEL K, et al. Safety and Efficacy of FT596, a First-in-Class, Multi-Antigen Targeted, Off-the-Shelf, iPSC-Derived CD19 CAR NK Cell Therapy in Relapsed/Refractory B-Cell Lymphoma [J]. Blood, 2021, 138(): 823. doi:10.1182/blood-2021-151185
doi: 10.1182/blood-2021-151185 |
28 | TANG X, YANG L, LI Z, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia [J]. Am J Cancer Res, 2018, 8(6): 1083-1089. |
29 |
SAUTER C S, BORTHAKUR G, MOUNTJOY L, et al. A Phase 1 Study of NKX101, a Chimeric Antigen Receptor Natural Killer (CAR-NK) Cell Therapy, with Fludarabine and Cytarabine in Patients with Acute Myeloid Leukemia [J]. Blood, 2023, 142: 2097. doi:10.1182/blood-2023-173582
doi: 10.1182/blood-2023-173582 |
30 |
HUANG R, WEN Q, WANG X, et al. Off-the-Shelf CD33 CAR-NK Cell Therapy for Relapse/Refractory AML: First-in-Human, Phase I Trial [J]. Blood, 2022, 140(): 7450-7451. doi:10.1182/blood-2022-170712
doi: 10.1182/blood-2022-170712 |
31 |
MAAKARON J E, SEICHTER C, WANGEN R, et al. Phase I Study of FT538 + Daratumumab for Treatment of r/r AML [J]. Blood, 2023, 142(): 4842. doi:10.1182/blood-2023-189132
doi: 10.1182/blood-2023-189132 |
32 |
DHAKAL B, BERDEJA J G, GREGORY T, et al. Interim Phase I Clinical Data of FT576 As Monotherapy and in Combination with Daratumumab in Subjects with Relapsed/Refractory Multiple Myeloma [J]. Blood, 2022, 140(): 4586-4587. doi:10.1182/blood-2022-166994
doi: 10.1182/blood-2022-166994 |
33 | 孙昭晨, 蒋君妍, 陈一天. CAR-T细胞在结直肠癌治疗方面的研究进展 [J]. 实用医学杂志, 2024, 40(18): 2640-2646. |
34 |
STERNER R C, STERNER R M. CAR-T cell therapy: current limitations and potential strategies [J]. Blood Cancer J, 2021, 11(4): 69. doi:10.1038/s41408-021-00459-7
doi: 10.1038/s41408-021-00459-7 |
35 |
JOGALEKAR M P, RAJENDRAN R L, KHAN F, et al. CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments [J]. Front Immunol, 2022, 13: 925985. doi:10.3389/fimmu.2022.925985
doi: 10.3389/fimmu.2022.925985 |
36 |
CHO Y, DOH J. The extracellular matrix in solid tumor immunotherapy [J]. Trends Immunol, 2024, 45(9): 705-714. doi:10.1016/j.it.2024.07.009
doi: 10.1016/j.it.2024.07.009 |
37 |
HO W J, JAFFEE E M, ZHENG L. The tumour microenvironment in pancreatic cancer⁃clinical challenges and opportunities [J]. Nat Rev Clin Oncol, 2020, 17(9): 527-540. doi:10.1038/s41571-020-0363-5
doi: 10.1038/s41571-020-0363-5 |
38 |
TERRéN I, ORRANTIA A, VITALLÉ J, et al. NK Cell Metabolism and Tumor Microenvironment [J]. Front Immunol, 2019, 10: 2278. doi:10.3389/fimmu.2019.02278
doi: 10.3389/fimmu.2019.02278 |
39 |
ZHENG X, QIAN Y, FU B, et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance [J]. Nat Immunol, 2019, 20(12): 1656-1667. doi:10.1038/s41590-019-0511-1
doi: 10.1038/s41590-019-0511-1 |
40 |
GARCIA-CHAGOLLAN M, CARRANZA-TORRES I E, CARRANZA-ROSALES P, et al. Expression of NK Cell Surface Receptors in Breast Cancer Tissue as Predictors of Resistance to Antineoplastic Treatment [J]. Technol Cancer Res Treat, 2018, 17: 1533033818764499. doi:10.1177/1533033818764499
doi: 10.1177/1533033818764499 |
41 |
ZHANG P F, GAO C, HUANG X Y, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma [J]. Mol Cancer, 2020, 19(1): 110. doi:10.1186/s12943-020-01222-5
doi: 10.1186/s12943-020-01222-5 |
42 |
YU S, YAO X. Advances on immunotherapy for osteosarcoma [J]. Mol Cancer, 2024, 23(1): 192. doi:10.1186/s12943-024-02105-9
doi: 10.1186/s12943-024-02105-9 |
43 |
VELUCHAMY J P, LOPEZ-LASTRA S, SPANHOLTZ J, et al. In Vivo Efficacy of Umbilical Cord Blood Stem Cell-Derived NK Cells in the Treatment of Metastatic Colorectal Cancer [J]. Front Immunol, 2017, 8: 87. doi:10.3389/fimmu.2017.00087
doi: 10.3389/fimmu.2017.00087 |
44 |
ZHANG Q, ZHANG H, DING J, et al. Combination Therapy with EpCAM-CAR-NK-92 Cells and Regorafenib against Human Colorectal Cancer Models [J]. J Immunol Res, 2018, 2018: 4263520. doi:10.1155/2018/4263520
doi: 10.1155/2018/4263520 |
45 |
LIU T, DAI X, XU Y, et al. CD22 is a potential target of CAR-NK cell therapy for esophageal squamous cell carcinoma [J]. J Transl Med, 2023, 21(1): 710. doi:10.1186/s12967-023-04409-8
doi: 10.1186/s12967-023-04409-8 |
46 |
NANGIA C, SOON-SHIONG P, RABIZADEH S, et al. 358P - Complete responses in patients with second-line or greater metastatic triple negative breast cancer (TNBC) following first-in-human immunotherapy combining NK and T cell activation with off-the-shelf high-affinity CD16 NK cell line (haNK) [J]. Annals Oncol, 2019, 30: v130. doi:10.1093/annonc/mdz242.053
doi: 10.1093/annonc/mdz242.053 |
47 |
HONG G, CHEN X, SUN X, et al. Effect of autologous NK cell immunotherapy on advanced lung adenocarcinoma with EGFR mutations [J]. Precis Clin Med, 2019, 2(4): 235-245. doi:10.1093/pcmedi/pbz023
doi: 10.1093/pcmedi/pbz023 |
48 |
CóZAR B, GREPPI M, CARPENTIER S, et al. Tumor-Infiltrating Natural Killer Cells [J]. Cancer Discov, 2021, 11(1): 34-44. doi:10.1158/2159-8290.cd-20-0655
doi: 10.1158/2159-8290.cd-20-0655 |
49 |
CURSONS J, SOUZA-FONSECA-GUIMARAES F, FOROUTAN M, et al. A Gene Signature Predicting Natural Killer Cell Infiltration and Improved Survival in Melanoma Patients [J]. Cancer Immunol Res, 2019, 7(7): 1162-1174. doi:10.1158/2326-6066.cir-18-0500
doi: 10.1158/2326-6066.cir-18-0500 |
50 |
PAGE A, CHUVIN N, VALLADEAU-GUILEMOND J, et al. Development of NK cell-based cancer immunotherapies through receptor engineering [J]. Cell Mol Immunol, 2024, 21(4): 315-331. doi:10.1038/s41423-024-01145-x
doi: 10.1038/s41423-024-01145-x |
51 |
XIAO L, CEN D, GAN H, et al. Adoptive Transfer of NKG2D CAR mRNA-Engineered Natural Killer Cells in Colorectal Cancer Patients [J]. Mol Ther, 2019, 27(6): 1114-1125. doi:10.1016/j.ymthe.2019.03.011
doi: 10.1016/j.ymthe.2019.03.011 |
52 |
NG Y Y, TAY J C K, WANG S. CXCR1 Expression to Improve Anti-Cancer Efficacy of Intravenously Injected CAR-NK Cells in Mice with Peritoneal Xenografts [J]. Mol Ther Oncolytics, 2020, 16: 75-85. doi:10.1016/j.omto.2019.12.006
doi: 10.1016/j.omto.2019.12.006 |
53 |
CARLSTEN M, LEVY E, KARAMBELKAR A, et al. Efficient mRNA-Based Genetic Engineering of Human NK Cells with High-Affinity CD16 and CCR7 Augments Rituximab-Induced ADCC against Lymphoma and Targets NK Cell Migration toward the Lymph Node-Associated Chemokine CCL19 [J]. Front Immunol, 2016, 7: 105. doi:10.3389/fimmu.2016.00105
doi: 10.3389/fimmu.2016.00105 |
54 |
SHIN S H, LEE Y E, YOON H N, et al. An innovative strategy harnessing self-activating CAR-NK cells to mitigate TGF-β1-driven immune suppression [J]. Biomaterials, 2024, 314: 122888. doi:10.1016/j.biomaterials.2024.122888
doi: 10.1016/j.biomaterials.2024.122888 |
55 |
SHAIM H, SHANLEY M, BASAR R, et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells [J]. J Clin Invest, 2021, 131(14): e142116. doi:10.1172/jci142116
doi: 10.1172/jci142116 |
56 |
ZUO W, ZHAO X. Natural killer cells play an important role in virus infection control: Antiviral mechanism, subset expansion and clinical application [J]. Clin Immunol, 2021, 227: 108727. doi:10.1016/j.clim.2021.108727
doi: 10.1016/j.clim.2021.108727 |
57 |
SáNCHEZ-GAONA N, GALLEGO-CORTéS A, ASTORGA-GAMAZA A, et al. NKG2C and NKG2A coexpression defines a highly functional antiviral NK population in spontaneous HIV control [J]. JCI Insight, 2024, 9(20): e182660. doi:10.1172/jci.insight.182660
doi: 10.1172/jci.insight.182660 |
58 |
JUAN X, FAN Z, CAO X, et al. CD56(bright) NK cell expansion correlated with EBV reactivation control post allogeneic hematopoietic stem cell transplantation [J]. Ann Hematol, 2024, 103(9): 3723-3735. doi:10.1007/s00277-024-05827-4
doi: 10.1007/s00277-024-05827-4 |
59 |
YU X X, SHANG Q N, LIU X F, et al. Donor NKG2C homozygosity contributes to CMV clearance after haploidentical transplantation [J]. JCI Insight, 2022, 7(3): e149120. doi:10.1172/jci.insight.149120
doi: 10.1172/jci.insight.149120 |
60 |
SHANG Q N, YU X X, XU Z L, et al. Expanded clinical-grade NK cells exhibit stronger effects than primary NK cells against HCMV infection [J]. Cell Mol Immunol, 2023, 20(8): 895-907. doi:10.1038/s41423-023-01046-5
doi: 10.1038/s41423-023-01046-5 |
61 |
SCHETT G, JUNE C H. CAR T cells in autoimmune disease: On the road to remission [J]. Immunity, 2024, 57(12): 2705-2709. doi:10.1016/j.immuni.2024.10.011
doi: 10.1016/j.immuni.2024.10.011 |
62 |
REIGHARD S D, CRANERT S A, RANGEL K M, et al. Therapeutic Targeting of Follicular T Cells with Chimeric Antigen Receptor-Expressing Natural Killer Cells [J]. Cell Rep Med, 2020, 1(1): 100003. doi:10.1016/j.xcrm.2020.100003
doi: 10.1016/j.xcrm.2020.100003 |
[1] | Jun REN,Wanyi LIN,Zhenhai. ZHOU. The clinical significance of thromboelastography in evaluating the bleeding risk in acute leukemia patients with platelet transfusion refractoriness [J]. The Journal of Practical Medicine, 2024, 40(9): 1225-1229. |
[2] | Zhengcui LU,Zhiyue LUO,Bin TANG,Lei CHEN,Kun DENG,Tinglun ZHU,Changsong. WU. Observation on the therapeutic effect of LPE combined with semi whole blood replacement for postoperative anemia caused by infection [J]. The Journal of Practical Medicine, 2023, 39(24): 3238-3242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||