The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (22): 3268-3274.doi: 10.3969/j.issn.1006-5725.2024.22.025
• Reviews • Previous Articles
Ji JIN1,2,Hong SUN1,Yong ZHUANG1,Xu NING1,Miao LIU1()
Received:
2024-08-13
Online:
2024-11-25
Published:
2024-11-25
Contact:
Miao LIU
E-mail:liumiao7257@163.com
CLC Number:
Ji JIN,Hong SUN,Yong ZHUANG,Xu NING,Miao LIU. Research progress on mechanism and treatment of intervertebral disc aging[J]. The Journal of Practical Medicine, 2024, 40(22): 3268-3274.
1 |
KIRNAZ S, CAPADONA C, WONG T, et al. Fundamentals of Intervertebral Disc Degeneration[J]. World Neurosurg, 2022, 157: 264-273. doi:10.1016/j.wneu.2021.09.066
doi: 10.1016/j.wneu.2021.09.066 |
2 |
URITS I, BURSHTEIN A, SHARMA M, et al. Low Back Pain, a Comprehensive Review: Pathophysiology, Diagnosis, and Treatment[J]. Curr Pain Headache Rep, 2019, 23(3): 23. doi:10.1007/s11916-019-0757-1
doi: 10.1007/s11916-019-0757-1 |
3 |
DIELEMAN J L, CAO J, CHAPIN A, et al. US Health Care Spending by Payer and Health Condition, 1996-2016[J]. JAMA, 2020, 323(9): 863-884. doi:10.1001/jama.2020.0734
doi: 10.1001/jama.2020.0734 |
4 | 范转转, 李文婷, 王志勇. 1990―2019年中国人群腰背痛及其危险因素疾病负担变化趋势[J]. 中华疾病控制杂志, 2023, 27(7): 807-813. |
5 |
VO N V, HARTMAN R A, PATIL P R, et al. Molecular mechanisms of biological aging in intervertebral discs[J]. J Orthop Res, 2016, 34(8): 1289-1306. doi:10.1002/jor.23195
doi: 10.1002/jor.23195 |
6 |
BOOS N, WEISSBACH S, ROHRBACH H, et al. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science[J]. Spine (Phila Pa 1976), 2002, 27(23): 2631-2644. doi:10.1097/01.brs.0000035304.27153.5b
doi: 10.1097/01.brs.0000035304.27153.5b |
7 |
YANG S, ZHANG F, MA J, et al. Intervertebral disc ageing and degeneration: The antiapoptotic effect of oestrogen[J]. Ageing Res Rev, 2020, 57: 100978. doi:10.1016/j.arr.2019.100978
doi: 10.1016/j.arr.2019.100978 |
8 |
CHEUNG K M, KARPPINEN J, CHAN D, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals[J]. Spine (Phila Pa 1976), 2009, 34(9): 934-940. doi:10.1097/brs.0b013e3181a01b3f
doi: 10.1097/brs.0b013e3181a01b3f |
9 |
ADAMS M A, ROUGHLEY P J. What is intervertebral disc degeneration, and what causes it?[J]. Spine (Phila Pa 1976), 2006, 31(18): 2151-2161. doi:10.1097/01.brs.0000231761.73859.2c
doi: 10.1097/01.brs.0000231761.73859.2c |
10 |
RIDER S M, MIZUNO S, KANG J D. Molecular Mechanisms of Intervertebral Disc Degeneration[J]. Spine Surg Relat Res, 2019, 3(1): 1-11. doi:10.22603/ssrr.2017-0095
doi: 10.22603/ssrr.2017-0095 |
11 | 吴禹锋, 陈飞, 应奇峰, 等. 衰老细胞及其与椎间盘退变疾病关系的研究进展[J]. 中国脊柱脊髓杂志, 2023, 33(8): 759-764. |
12 | 孙毅, 梁彦超, 武峰, 等. 成人腰椎软骨终板的组织学特征[J]. 脊柱外科杂志, 2019, 17(1): 47-50. |
13 |
CHEPURIN D, CHAMOLI U, SHELDRICK K, et al. Bony stress in the lumbar spine is associated with intervertebral disc degeneration and low back pain: a retrospective case-control MRI study of patients under 25 years of age[J]. Eur Spine J, 2019, 28(11): 2470-2477. doi:10.1007/s00586-019-06148-1
doi: 10.1007/s00586-019-06148-1 |
14 |
STICH S, JAGIELSKI M, FLEISCHMANN A, et al. Degeneration of Lumbar Intervertebral Discs: Characterization of Anulus Fibrosus Tissue and Cells of Different Degeneration Grades[J]. Int J Mol Sci, 2020, 21(6):2165. doi:10.3390/ijms21062165
doi: 10.3390/ijms21062165 |
15 | 付远飞, 何升华, 赖居易, 等. 地龙提取物抑制核因子κB信号通路延缓椎间盘髓核细胞的退变[J]. 中国组织工程研究, 2021, 25(2): 264-268. |
16 | 陈江, 潘渴, 凌云, 等. 加味独活寄生合剂联合体外冲击波对腰椎间盘突出症患者的临床疗效及其对NF-κB信号通路的影响[J]. 湖南中医药大学学报, 2024, 44(8): 1510-1516. |
17 | 李想, 孔令俊, 邓叶龙, 等. 高糖调控椎间盘退变作用机制的研究进展[J]. 风湿病与关节炎, 2024, 13(5): 72-76. |
18 | 谭淑仪, 刘宇薇, 高海. 高糖对滑膜间充质干细胞衰老的影响[J]. 实用医学杂志, 2022, 38(14): 1773-1777. |
19 | 张广智, 武作龙, 贺学岗, 等. 细胞衰老与椎间盘退变的相关性研究进展[J]. 生命科学研究, 2021, 25(1): 58-63,94. |
20 | 谢锦伟, 鲁凌云, 余希杰. 细胞衰老在骨关节炎发病机制中的研究进展[J]. 中国修复重建外科杂志, 2021, 35(4): 519-526. |
21 |
OGRODNIK M. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo[J]. Aging Cell, 2021, 20(4): e13338. doi:10.1111/acel.13338
doi: 10.1111/acel.13338 |
22 | 乌尔肯·别克拉米斯, 甫拉提·吾瓦力汗. 乳腺癌相关治疗中细胞周期蛋白依赖性激酶4和6抑制剂机制相关的研究进展[J]. 临床医学进展, 2023, 13(11): 18374-18381. |
23 | 钟培瑞, 何晓艳, 廖瑛, 等. P53/P21通路在电针抑制骨质疏松大鼠模型成骨细胞衰老中的机制[J]. 实用医学杂志, 2023, 39(2): 192-197. |
24 | 刘晶, 毕雪梦, 吕静萱, 等. 基于p16通路探索参黄冲剂对Aβ_(25-35)诱导的SH-SY5Y细胞凋亡和细胞周期的影响[J]. 中国病理生理杂志, 2022, 38(9): 1569-1576. |
25 | 易威威. HO-1通过诱导线粒体途径的自噬来抑制人髓核细胞衰老和退变[D]. 重庆:重庆医科大学,2020. |
26 |
DAI S, SHI X, QIN R, et al. Sodium Tanshinone IIA Sulfonate Ameliorates Injury-Induced Oxidative Stress and Intervertebral Disc Degeneration in Rats by Inhibiting p38 MAPK Signaling Pathway[J]. Oxid Med Cell Longev, 2021, 2021: 5556122. doi:10.1155/2021/5556122
doi: 10.1155/2021/5556122 |
27 |
SHI Z W, ZHU L, SONG Z R, et al. Roles of p38 MAPK signalling in intervertebral disc degeneration[J]. Cell Prolif, 2023, 56(8): e13438. doi:10.1111/cpr.13438
doi: 10.1111/cpr.13438 |
28 | 朱健, 邓易, 胡栩策, 等. 椎间盘退变分子机制及相关信号转导通路的研究进展[J]. 国际骨科学杂志, 2020, 41(1): 27-31. |
29 | 任正肖, 张颖颖, 车萍, 等. 细胞衰老与特发性肺纤维化药物治疗研究进展[J]. 中国药理学通报, 2024, 40(4): 601-605. |
30 |
KLOPPENBURG M, BERENBAUM F. Osteoarthritis year in review 2019: epidemiology and therapy[J]. Osteoarthritis Cartilage, 2020, 28(3): 242-248. doi:10.1016/j.joca.2020.01.002
doi: 10.1016/j.joca.2020.01.002 |
31 |
XIN J, WANG Y, ZHENG Z, et al. Treatment of Intervertebral Disc Degeneration[J]. Orthop Surg, 2022, 14(7): 1271-1280. doi:10.1111/os.13254
doi: 10.1111/os.13254 |
32 |
KRUT Z, PELLED G, GAZIT D, et al. Stem Cells and Exosomes: New Therapies for Intervertebral Disc Degeneration[J]. Cells, 2021, 10(9):2241. doi:10.3390/cells10092241
doi: 10.3390/cells10092241 |
33 | 贾瑄, 程龙, 牛畅. 细胞衰老与肿瘤治疗[J]. 首都师范大学学报(自然科学版), 2024, 45(4): 68-76. |
34 | 邬丛笑, 潘博. 靶向消除衰老脂肪细胞的药物及其研究进展[J]. 中国美容整形外科杂志, 2021, 32(5): 312-314,328. |
35 |
SILWAL P, NGUYEN-THAI A M, MOHAMMAD H A, et al. Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and Potential Therapeutic Opportunities[J]. Biomolecules, 2023, 13(4):686. doi:10.3390/biom13040686
doi: 10.3390/biom13040686 |
36 | 刘美琛, 戴国梁, 曹阳, 等. 达沙替尼与槲皮素在大鼠体内药动学相互作用特征[J]. 中国医院药学杂志, 2023, 43(13): 1452-1457. |
37 |
ZHU Y, TCHKONIA T, PIRTSKHALAVA T, et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs[J]. Aging Cell, 2015, 14(4): 644-658. doi:10.1111/acel.12344
doi: 10.1111/acel.12344 |
38 |
TORELLO C O, ALVAREZ M C, OLALLA SAAD S T. Polyphenolic Flavonoid Compound Quercetin Effects in the Treatment of Acute Myeloid Leukemia and Myelodysplastic Syndromes[J]. Molecules, 2021, 26(19):5781. doi:10.3390/molecules26195781
doi: 10.3390/molecules26195781 |
39 |
HICKSON L J, LANGHI PRATA L G P, BOBART S A, et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease[J]. EBioMedicine, 2019, 47: 446-456. doi:10.1016/j.ebiom.2019.08.069
doi: 10.1016/j.ebiom.2019.08.069 |
40 |
NOVAIS E J, TRAN V A, JOHNSTON S N, et al. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice[J]. Nat Commun, 2021, 12(1): 5213. doi:10.1038/s41467-021-25453-2
doi: 10.1038/s41467-021-25453-2 |
41 |
ZHOU C, YAO S, FU F, et al. Morroniside attenuates nucleus pulposus cell senescence to alleviate intervertebral disc degeneration via inhibiting ROS-Hippo-p53 pathway[J]. Front Pharmacol, 2022, 13: 942435. doi:10.3389/fphar.2022.942435
doi: 10.3389/fphar.2022.942435 |
42 |
XIE Q, LI H, LU D, et al. Neuroprotective Effect for Cerebral Ischemia by Natural Products: A Review[J]. Front Pharmacol, 2021, 12: 607412. doi:10.3389/fphar.2021.607412
doi: 10.3389/fphar.2021.607412 |
43 |
MIYAJIMA C, KAWARADA Y, INOUE Y, et al. Transcriptional Coactivator TAZ Negatively Regulates Tumor Suppressor p53 Activity and Cellular Senescence[J]. Cells, 2020, 9(1):171. doi:10.3390/cells9010171
doi: 10.3390/cells9010171 |
44 |
YU H, YAO S, ZHOU C, et al. Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-κB signaling[J]. J Ethnopharmacol, 2021, 266: 113447. doi:10.1016/j.jep.2020.113447
doi: 10.1016/j.jep.2020.113447 |
45 | 姚倩, 朱家峰, 杨茂全, 等. 姜黄素通过抑制JNK介导的炎症缓解慢性束缚应激诱导的大鼠心脏功能障碍[J]. 中国病理生理杂志, 2024, 40(8): 1426-1435. |
46 |
BIELAK-ZMIJEWSKA A, GRABOWSKA W, CIOLKO A, et al. The Role of Curcumin in the Modulation of Ageing[J]. Int J Mol Sci, 2019, 20(5):1239. doi:10.3390/ijms20051239
doi: 10.3390/ijms20051239 |
47 |
KANG L, XIANG Q, ZHAN S, et al. Restoration of Autophagic Flux Rescues Oxidative Damage and Mitochondrial Dysfunction to Protect against Intervertebral Disc Degeneration[J]. Oxid Med Cell Longev, 2019, 2019: 7810320. doi:10.1155/2019/7810320
doi: 10.1155/2019/7810320 |
48 |
HOU G, ZHAO H, TENG H, et al. N-Cadherin Attenuates High Glucose-Induced Nucleus Pulposus Cell Senescence Through Regulation of the ROS/NF-κB Pathway[J]. Cell Physiol Biochem, 2018, 47(1): 257-265. doi:10.1159/000489804
doi: 10.1159/000489804 |
49 |
MOGHADDAM N S A, OSKOUIE M N, BUTLER A E, et al. Hormetic effects of curcumin: What is the evidence?[J]. J Cell Physiol, 2019, 234(7): 10060-10071. doi:10.1002/jcp.27880
doi: 10.1002/jcp.27880 |
50 |
LIU W, ZHAI Y, HENG X, et al. Oral bioavailability of curcumin: problems and advancements[J]. J Drug Target, 2016, 24(8): 694-702. doi:10.3109/1061186x.2016.1157883
doi: 10.3109/1061186x.2016.1157883 |
51 | 陈煜淳, 林勇, 刘勇, 等. 姜黄素的应用、制备及改性研究进展[J]. 现代食品科技, 2024, 40(6): 327-335. |
52 |
MANNARINO M, CHERIF H, LI L, et al. Toll-like receptor 2 induced senescence in intervertebral disc cells of patients with back pain can be attenuated by o-vanillin[J]. Arthritis Res Ther, 2021, 23(1): 117. doi:10.1186/s13075-021-02504-z
doi: 10.1186/s13075-021-02504-z |
53 | CHERIF H, BISSON D, KOCABAS S, et al. Senolytic and anti-inflammatory effects of curcumin and o-vanillin to reduce intervertebral disc degeneration and low back pain[J]. Orthop Procs, 2020,102-B(supp8):53. |
54 |
DI MICCO R, KRIZHANOVSKY V, BAKER D,et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 75-95. doi:10.1038/s41580-020-00314-w
doi: 10.1038/s41580-020-00314-w |
55 |
WU Y, SHEN S, SHI Y, et al. Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration[J]. Front Bioeng Biotechnol, 2022, 10: 823945. doi:10.3389/fbioe.2022.823945
doi: 10.3389/fbioe.2022.823945 |
56 |
MIURA Y, ENDO K, KOMORI K, et al. Clearance of senescent cells with ABT-263 improves biological functions of synovial mesenchymal stem cells from osteoarthritis patients[J]. Stem Cell Res Ther, 2022, 13(1): 222. doi:10.1186/s13287-022-02901-4
doi: 10.1186/s13287-022-02901-4 |
57 |
BLAGOSKLONNY M V. Cell senescence, rapamycin and hyperfunction theory of aging[J]. Cell Cycle, 2022, 21(14): 1456-1467. doi:10.1080/15384101.2022.2054636
doi: 10.1080/15384101.2022.2054636 |
58 |
HE S, SHARPLESS N E. Senescence in Health and Disease[J]. Cell, 2017, 169(6): 1000-1011. doi:10.1016/j.cell.2017.05.015
doi: 10.1016/j.cell.2017.05.015 |
59 |
PATIL P, DONG Q, WANG D, et al. Systemic clearance of p16(INK4a) -positive senescent cells mitigates age-associated intervertebral disc degeneration[J]. Aging Cell, 2019, 18(3): e12927. doi:10.1111/acel.12927
doi: 10.1111/acel.12927 |
60 |
XIE C, SHI Y, CHEN Z, et al. Apigenin Alleviates Intervertebral Disc Degeneration via Restoring Autophagy Flux in Nucleus Pulposus Cells[J]. Front Cell Dev Biol, 2021, 9: 787278. doi:10.3389/fcell.2021.787278
doi: 10.3389/fcell.2021.787278 |
61 |
ZHANG G Z, CHEN H W, DENG Y J, et al. BRD4 Inhibition Suppresses Senescence and Apoptosis of Nucleus Pulposus Cells by Inducing Autophagy during Intervertebral Disc Degeneration: An In Vitro and In Vivo Study[J]. Oxid Med Cell Longev, 2022, 2022: 9181412. doi:10.1155/2022/9181412
doi: 10.1155/2022/9181412 |
62 |
FENG C, LIU H, YANG M, et al. Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways[J]. Cell Cycle, 2016, 15(13): 1674-1684. doi:10.1080/15384101.2016.1152433
doi: 10.1080/15384101.2016.1152433 |
63 | QIU H B, BIAN W G, ZHANG L J, et al. Inhibition of p53/p21 by TWIST alleviates TNF-α induced nucleus pulposus cell senescence in vitro[J]. Eur Rev Med Pharmacol Sci, 2020, 24(24): 12645-12654. |
64 |
YIN L, LIU X, SHI Y, et al. Therapeutic Advances of Stem Cell-Derived Extracellular Vesicles in Regenerative Medicine[J]. Cells, 2020, 9(1):63. doi:10.3390/cells9030707
doi: 10.3390/cells9030707 |
65 |
XIA C, ZENG Z, FANG B, et al. Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects[J]. Free Radic Biol Med, 2019, 143: 1-15. doi:10.1016/j.freeradbiomed.2019.07.026
doi: 10.1016/j.freeradbiomed.2019.07.026 |
66 |
SUN Y, ZHANG W, LI X. Induced pluripotent stem cell-derived mesenchymal stem cells deliver exogenous miR-105-5p via small extracellular vesicles to rejuvenate senescent nucleus pulposus cells and attenuate intervertebral disc degeneration[J]. Stem Cell Res Ther, 2021, 12(1): 286. doi:10.1186/s13287-021-02362-1
doi: 10.1186/s13287-021-02362-1 |
[1] | Jingwen AN,Junyun FENG,Lei RAO,Dewu LIU. Research progress on relationship between cellular senescence and scar fibrosis [J]. The Journal of Practical Medicine, 2024, 40(12): 1749-1754. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||