The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (13): 1814-1821.doi: 10.3969/j.issn.1006-5725.2024.13.009
• Clinical Research • Previous Articles Next Articles
Wendi ZHOU1,2,Jiamin LIN1,2,Daichen JU1,2,Qi WANG1,Jialou ZHU1,Ning SU1,Jinxing. HU1()
Received:
2024-02-25
Online:
2024-07-10
Published:
2024-07-09
Contact:
Jinxing. HU
E-mail:hujinxing2000@163.com
CLC Number:
Wendi ZHOU,Jiamin LIN,Daichen JU,Qi WANG,Jialou ZHU,Ning SU,Jinxing. HU. Proteomic profiling and functional analysis of differentially expressed proteins in lung cancer coexistent with pulmonary tuberculosis[J]. The Journal of Practical Medicine, 2024, 40(13): 1814-1821.
Tab.1
Differential proteins with the highest fold changes between LC-PTB and LC"
蛋白ID | 基因名称 | 调节方式 | 变化倍数(LC-PTB/LC) | P值 | 蛋白功能描述 |
---|---|---|---|---|---|
C9JCN9 | HSBP1L1 | 上调 | 12.84 | 0.035 7 | 转录因子 |
Q9BW71 | HIRIP3 | 上调 | 11.97 | 0.049 4 | 染色质结构的维护 |
P10645 | CHGA | 上调 | 7.57 | 0.044 0 | 参与神经内分泌活动 |
Q9NZK5 | ADA2 | 上调 | 6.28 | 0.047 9 | 参与调节免疫和炎症反应 |
Q8NFY9 | KBTBD8 | 上调 | 6.40 | 0.012 7 | 影响细胞功能 |
Q9UI32 | GLS2 | 下调 | -3.51 | 0.014 5 | 维护氨基酸和能量代谢,调节神经递质 |
O14653 | GOSR2 | 下调 | -2.89 | 0.034 5 | 确保细胞内物质运输以维持稳态 |
Q13233 | MAP3K1 | 下调 | -2.71 | 0.002 8 | 细胞信号传导的关键调节因子 |
Q9UIC8 | LCMT1 | 下调 | -2.44 | 0.001 0 | 蛋白质后翻译修饰 |
C9JCN9 | SRRM2 | 下调 | -2.06 | 0.025 6 | 调控基因表达、维护细胞功能 |
Tab.2
Differential proteins with the most significant P-values between LC-PTB and LC"
蛋白ID | 基因名称 | 调节方式 | 变化倍数(LC-PTB/LC) | P值 | 蛋白功能描述 |
---|---|---|---|---|---|
Q9H0J4 | QRICH2 | 上调 | 1.94 | 0.000 29 | 调节基因表达和细胞信号传导 |
Q16363 | LAMA4 | 上调 | 1.54 | 0.002 44 | 影响细胞分化、迁移和信号传导 |
Q9UJC5 | SH3BGRL2 | 上调 | 1.74 | 0.003 62 | 参与细胞信号传导 |
P55773 | CCL23 | 上调 | 1.94 | 0.004 94 | 参与免疫调节及炎症反应 |
Q9BRA2 | TXNDC17 | 上调 | 1.73 | 0.006 21 | 参与氧化还原反应和细胞信号传递 |
P15291 | B4GALT1 | 下调 | -0.78 | 0.000 02 | 半乳糖转移酶 |
P61018 | RAB4B | 下调 | -0.66 | 0.000 44 | 细胞内囊泡运输 |
O00154 | ACOT7 | 下调 | -0.88 | 0.000 87 | 参与脂肪酸代谢 |
Q9UIC8 | LCMT1 | 下调 | -2.44 | 0.001 02 | 翻译后甲基化修饰 |
P23443 | RPS6KB1 | 下调 | -0.65 | 0.001 09 | 调节蛋白质合成 |
1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660 |
2 |
WANG C, WANG Z, WANG G, et al. COVID-19 in early 2021: current status and looking forward[J]. Signal Transduct Target Ther, 2021, 6(1): 114. doi:10.1038/s41392-021-00527-1
doi: 10.1038/s41392-021-00527-1 |
3 |
BAGCCHI S. WHO′s Global Tuberculosis Report 2022[J]. Lancet Microbe, 2023, 4(1): e20. doi:10.1016/s2666-5247(22)00359-7
doi: 10.1016/s2666-5247(22)00359-7 |
4 |
吴惠忠,胡锦兴. 结核病传播研究进展[J]. 实用医学杂志, 2023, 39(19): 2424-2427. doi:10.3969/j.issn.1006-5725.2023.19.002
doi: 10.3969/j.issn.1006-5725.2023.19.002 |
5 |
HWANG S Y, KIM J Y, LEE H S, et al. Pulmonary Tuberculosis and Risk of Lung Cancer: A Systematic Review and Meta-Analysis[J]. J Clin Med,2022, 11(3):765. doi:10.3390/jcm11030765
doi: 10.3390/jcm11030765 |
6 |
ELHADI M, KHALED A, MSHERGHI A. Infectious diseases as a cause of death among cancer patients: a trend analysis and population-based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results database[J]. Infect Agent Cancer, 2021, 16(1): 72. doi:10.1186/s13027-021-00413-z
doi: 10.1186/s13027-021-00413-z |
7 |
XIONG K, SUN W, HE Y, et al. Advances in molecular mechanisms of interaction between Mycobacterium tuberculosis and lung cancer: a narrative review.[J]. Transl Lung Cancer Res,2021, 10(10): 4012-4026. doi:10.21037/tlcr-21-465
doi: 10.21037/tlcr-21-465 |
8 |
中华人民共和国国家卫生和计划生育委员会. 结核病分类(ws196—2017) [J]. 新发传染病电子杂志, 2018(3):191-192. doi:10.3877/j.issn.2096-2738.2018.03.019
doi: 10.3877/j.issn.2096-2738.2018.03.019 |
9 |
YANG L, ZHUANG L, YE Z, et al. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions[J]. iScience, 2023, 26(10): 107881. doi:10.1016/j.isci.2023.107881
doi: 10.1016/j.isci.2023.107881 |
10 |
崔兰兰,张革, 徐邦牢. 牙龈卟啉单胞菌感染性食管鳞癌细胞外泌体蛋白组学分析[J]. 实用医学杂志, 2023, 39(17): 2171-2175. doi:10.3969/j.issn.1006-5725.2023.17.004
doi: 10.3969/j.issn.1006-5725.2023.17.004 |
11 |
LIU Q, ZHANG J, GUO C, et al. Proteogenomic characterization of small cell lung cancer identifies biological insights and subtype-specific therapeutic strategies[J]. Cell, 2024, 187(1): 184-203.e28. doi:10.1016/j.cell.2023.12.004
doi: 10.1016/j.cell.2023.12.004 |
12 | GILLETTE M A, SATPATHY S, CAO S, et al. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma[J]. Cell, 2020, 182(1): 200-225.e35. |
13 |
ZHANG M, XIE Y, LI S, et al. Proteomics Analysis of Exosomes From Patients With Active Tuberculosis Reveals Infection Profiles and Potential Biomarkers[J]. Front Microbiol, 2022, 12: 800807. doi:10.3389/fmicb.2021.800807
doi: 10.3389/fmicb.2021.800807 |
14 |
KALJAS Y, LIU C, SKALDIN M, et al. Human adenosine deaminases ADA1 and ADA2 bind to different subsets of immune cells[J]. Cell Mol Life Sci, 2017, 74(3): 555-570. doi:10.1007/s00018-016-2357-0
doi: 10.1007/s00018-016-2357-0 |
15 |
DELEMARRE E M, VAN HOORN L, BOSSINK A W J, et al. Serum biomarker profile including CCL1, CXCL10, VEGF, and adenosine deaminase activity distinguishes active from remotely acquired latent tuberculosis[J]. Front Immunol, 2021, 12: 725447. doi:10.3389/fimmu.2021.725447
doi: 10.3389/fimmu.2021.725447 |
16 |
NAGY Á, LÁNCZKY A, MENYHÁRT O, et al. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets[J]. Sci Rep, 2018, 8(1): 9227. doi:10.1038/s41598-018-27521-y
doi: 10.1038/s41598-018-27521-y |
17 |
WANG L, LONDONO L M, COWELL J, et al. Targeting adenosine with adenosine deaminase 2 to inhibit growth of solid tumors[J]. Cancer Res, 2021, 81(12): 3319-3332. doi:10.1158/0008-5472.can-21-0340
doi: 10.1158/0008-5472.can-21-0340 |
18 |
LI H, CAO W, CHEN S, et al. Comparative interleukins and chemokines analysis of mice mesenchymal stromal cells infected with mycobacterium tuberculosis H37Rv and H37Ra[J]. Arch Biochem Biophys, 2023, 744: 109673. doi:10.1016/j.abb.2023.109673
doi: 10.1016/j.abb.2023.109673 |
19 |
XUE Z, VIS D J, BRUNA A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models[J]. Cell Res, 2018, 28(7): 719-729. doi:10.1038/s41422-018-0044-4
doi: 10.1038/s41422-018-0044-4 |
20 |
LIU C, WANG S, ZHU S, et al. MAP3K1-targeting therapeutic artificial miRNA suppresses the growth and invasion of breast cancer in vivo and in vitro[J]. Springerplus, 2016, 5: 11. doi:10.1186/s40064-015-1597-z
doi: 10.1186/s40064-015-1597-z |
21 |
JIN J, J-K BYUN, Y-K CHOI, et al. Targeting glutamine metabolism as a therapeutic strategy for cancer[J]. Exp Mol Med, 2023, 55(4): 706-715. doi:10.1038/s12276-023-00971-9
doi: 10.1038/s12276-023-00971-9 |
22 |
KOEKEN V A C M, LACHMANDAS E, RIZA A, et al. Role of glutamine metabolism in host defense against mycobacterium tuberculosis infection[J]. J Infect Dis, 2019, 219(10): 1662-1670. doi:10.1093/infdis/jiy709
doi: 10.1093/infdis/jiy709 |
23 |
VÁZQUEZ C L, RODGERS A, HERBST S, et al. The proneurotrophin receptor sortilin is required for Mycobacterium tuberculosis control by macrophages[J]. Sci Rep, 2016, 6: 29332. doi:10.1038/srep29332
doi: 10.1038/srep29332 |
24 |
AL-AKHRASS H, NAVES T, VINCENT F, et al. Sortilin limits EGFR signaling by promoting its internalization in lung cancer[J]. Nat Commun, 2017, 8(1): 1182. doi:10.1038/s41467-017-01172-5
doi: 10.1038/s41467-017-01172-5 |
25 |
SCHAAFSMA E, FUGLE C M, WANG X, et al. Pan-cancer association of HLA gene expression with cancer prognosis and immunotherapy efficacy[J]. Br J Cancer, 2021, 125(3): 422-432. doi:10.1038/s41416-021-01400-2
doi: 10.1038/s41416-021-01400-2 |
26 |
SENOSAIN M F, ZOU Y, NOVITSKAYA T, et al. HLA-DR cancer cells expression correlates with T cell infiltration and is enriched in lung adenocarcinoma with indolent behavior[J]. Sci Rep, 2021, 11(1): 14424. doi:10.1038/s41598-021-93807-3
doi: 10.1038/s41598-021-93807-3 |
27 |
YANG P L, HE X J, ZANG Q J, et al. Association of human leukocyte antigen DRB1 polymorphism and tuberculosis: a meta-analysis[J]. Int J Tuberc Lung Dis, 2016, 20(1): 121-128. doi:10.5588/ijtld.14.0930
doi: 10.5588/ijtld.14.0930 |
[1] | Qi CHEN,Yaxi ZHANG,Mingxia ZHANG,Jieyun ZHANG,Qianting. YANG. The detection value of tuberculosis-specific QFT-TB in different types of specimens of tuberculosis patients [J]. The Journal of Practical Medicine, 2024, 40(7): 1002-1005. |
[2] | Zishen LIU,Yingying ZHENG,Mengqi YUAN,Ganlin ZHANG,Guowang. YANG. The causal relationship between chemokine CCL2 and lung cancer: a two⁃sample Mendelian randomization study [J]. The Journal of Practical Medicine, 2024, 40(4): 532-536. |
[3] | Jiaming YANG,Shi XIE,Haishen ZHOU,Jiaqing ZHANG. A comparative study of clinical features and lymph node metastasis risk between early multi⁃primary and singlee pulmonary adenocarcinoma nodules [J]. The Journal of Practical Medicine, 2024, 40(22): 3208-3214. |
[4] | Linlin GAI,Weice SUN,Jinjin CHU,Donghua XU. Changes of M1/M2 macrophages polarization associated with active pulmonary tuberculosis and the effect of ESAT6 on macrophage polarization [J]. The Journal of Practical Medicine, 2024, 40(20): 2867-2873. |
[5] | Xinpan LI,Yi FANG,Jun QIU. Predictive value of CD3+/CD4+T lymphocyte level and neutrophil to lymphocyte ratio in radiation pneumonia [J]. The Journal of Practical Medicine, 2024, 40(20): 2923-2928. |
[6] | Haojie TANG,Zilong YANG,Zhaoxian YU,Zhiyu FENG,Haiping DONG,Xiang LI,Wei ZHAO,Haobin. KUANG. Construction and evaluation of a risk prediction model for linezolid-related neurological adverse reactions in patients with multidrug-resistant tuberculosis [J]. The Journal of Practical Medicine, 2024, 40(19): 2690-2695. |
[7] | Ling ZHU,Dewang REN,Runyang MA,Guowei LIANG,Xuejun. DOU. Methylation levels of the HIST1H4F gene mRNA region DNA and its diagnostic value in lung cancer tissues [J]. The Journal of Practical Medicine, 2024, 40(19): 2726-2732. |
[8] | Xueyan HU,Fanliang MENG,Juanjuan. DONG. Prognostic analysis of patients with bone metastases from primary non-small cell lung cancer with different pathologic staging [J]. The Journal of Practical Medicine, 2024, 40(16): 2316-2325. |
[9] | Shengfang YUAN,Bu WANG,Baoli XIANG,Jianqing ZHAO,Jingjing SHEN,Zhihua. ZHANG. Prediction of immune therapy efficacy and prognosis for advanced non-small cell lung cancer using peripheral blood circulation tumor DNA [J]. The Journal of Practical Medicine, 2024, 40(15): 2110-2115. |
[10] | Lanrong WANG,Xiaocui WANG,Yang CAO,Rui LI,Weihong WANG,Yingxi XU,Weixiang SHI,Yufei YANG,Ke MENG,Wei. ZHANG. A cross⁃sectional study on the risk of early screening for lung cancer in Zhengzhou City [J]. The Journal of Practical Medicine, 2024, 40(15): 2154-2160. |
[11] | Yuting LI,Qilu YAN,Qibin. SONG. Molecular basis of variability in EGFR⁃targeted therapy response in non⁃small cell lung cancer [J]. The Journal of Practical Medicine, 2024, 40(15): 2166-2171. |
[12] | Jing GUI,Feng WANG,Hui YANG,Yumao CAI,Chuangyue. HONG. Investigation of oxidised low⁃density lipoprotein as a risk assessment indicator in patients with type 2 diabetes mellitus combined with pulmonary tuberculosis [J]. The Journal of Practical Medicine, 2024, 40(14): 1995-2002. |
[13] | Sijie ZHENG,Jia XIANG,Qiantong CHEN,Yingxin LU,Yun LIU,Huai CHEN,Suidan. HUANG. Differential diagnostic value of wide⁃body spectral CT parameters in mediastinal metastatic, non⁃metastatic lymph nodes of lung cancer patients and reactive hyperplastic lymph nodes [J]. The Journal of Practical Medicine, 2024, 40(14): 2003-2008. |
[14] | Xue MA,Shihui. ZHOU. Role and potential mechanisms of p62/SQSTM1 on migration and metastasis of non⁃small cell lung cancer [J]. The Journal of Practical Medicine, 2024, 40(1): 13-18. |
[15] | Yang WU,Jian YAO,Jinliang. CHEN. The mechanism of lipid metabolism disorders promoting progression of lung cancer based on the oxLDL/LOX⁃1 signaling pathway [J]. The Journal of Practical Medicine, 2024, 40(1): 19-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||