| [1] |
李立立, 何灿灿, 谢春明. 肠道菌群在抑郁症发病机制及治疗中的研究进展[J]. 中华神经医学杂志, 2025, 24(5):519-523. doi:10.3760/cma.j.cn115354-20250211-00072 .
doi: 10.3760/cma.j.cn115354-20250211-00072
|
| [2] |
李欣悦, 吴民民, 朱路文. 脂质代谢异常与抑郁症发展的关联及机制研究进展[J]. 中国全科医学, 2025, 28(20):2562-2569. doi:10.12114/j.issn.1007-9572.2024.0233 .
doi: 10.12114/j.issn.1007-9572.2024.0233
|
| [3] |
NAGY C, MAITRA M, TANTI A, et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons[J].Nat Neurosci, 2020, 23(6):1-11. doi:10.1038/s41593-020-0621-y .
doi: 10.1038/s41593-020-0621-y
|
| [4] |
梁朝霞, 陈丹青. 孕产期抑郁症的发病机制[J]. 实用妇产科杂志, 2019,35(4):4. doi:CNKI:SUN:SFCZ.0.2019-04-003 .
doi: CNKI:SUN:SFCZ.0.2019-04-003
|
| [5] |
和智芬. 中晚期妊娠情绪焦虑抑郁情况调查及其相关因素分析[J]. 中国实用妇科与产科杂志, 2014, 24(19):303-305. doi:10.3969/j.issn.1007-614X.2014.19.33 .
doi: 10.3969/j.issn.1007-614X.2014.19.33
|
| [6] |
CLAES S. Neuroepigenetics of prenatal psychological stress[J]. Prog Mol Biol Transl Sci, 2018, 158:83-104. doi:10.1016/bs.pmbts.2018.04.007 .
doi: 10.1016/bs.pmbts.2018.04.007
|
| [7] |
GRAHAM A M, DOYLE O, TILDEN E L, et al. Effects of maternal psychological stress during pregnancy on offspring brain development: Considering the role of inflammation and potential for preventive intervention[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5):461-470. doi:10.1016/j.bpsc.2021.10.012 .
doi: 10.1016/j.bpsc.2021.10.012
|
| [8] |
陶龙, 刘锐, 徐家雯, 等. 慢性子代应激改善妊娠期慢性应激诱导的子代雄鼠抑郁[J]. 安徽医科大学学报, 2022,57(8): 1210-1215. doi:10.19405/j.cnki.issn1000-1492.2022.08.007 .
doi: 10.19405/j.cnki.issn1000-1492.2022.08.007
|
| [9] |
张阔, 陈鹏, 钱志侃, 等. 海马CRHR1受体介导妊娠期慢性应激致子代雄性小鼠抑郁[J]. 安徽医科大学学报, 2021, 56(3): 337-342. doi:10.19405/j.cnki.issn1000-1492.2021.03.001 .
doi: 10.19405/j.cnki.issn1000-1492.2021.03.001
|
| [10] |
EVANS J, MELOTTI R, HERON J,et al.The timing of maternal depressive symptoms and child cognitive development: A longitudinal study[J]. J Child Psychol Psychiatry, 2012, 53(6):632-640. doi:10.1111/j.1469-7610.2011.02513.x .
doi: 10.1111/j.1469-7610.2011.02513.x
|
| [11] |
DAGHER R K, BRUCKHEIM H E, COLPE L J, et al. Perinatal depression: Challenges and opportunities[J]. J Womens Health (Larchmt), 2020, 30(2):154-159. doi:10.1089/jwh.2020.8862 .
doi: 10.1089/jwh.2020.8862
|
| [12] |
FU Y, LIU H, HE L, et al. Prenatal chronic stress impairs the learning and memory ability via inhibition of the NO/cGMP/PKG pathway in the hippocampus of offspring[J]. Behav Brain Res, 2022, 433:114009. doi:10.1016/j.bbr.2022.114009 .
doi: 10.1016/j.bbr.2022.114009
|
| [13] |
ZHANG H, SHANG Y, XIAO X, et al. Prenatal stress-induced impairments of cognitive flexibility and bidirectional synaptic plasticity are possibly associated with autophagy in adolescent male-offspring[J]. Exp Neurol, 2017, 298(Pt A):68. doi:10.1016/j.expneurol.2017.09.001 .
doi: 10.1016/j.expneurol.2017.09.001
|
| [14] |
HUANG R, ZHANG Y, BAI Y, et al. N6-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors[J]. Biol Psychiatry, 2020, 88(5):392-404. doi:10.1016/j.biopsych.2020.02.018 .
doi: 10.1016/j.biopsych.2020.02.018
|
| [15] |
SAAVEDRA K S L A. Epigenetics: A missing link between early life stress and depression[J]. Adv Exp Med Biol, 2021, 1305(1):117-128. doi:10.1007/978-981-33-6044-0_8 .
doi: 10.1007/978-981-33-6044-0_8
|
| [16] |
WANG Q, ROY B, DWIVEDI Y. Co-expression network modeling identifies key long non-coding RNA and mRNA modules in altering molecular phenotype to develop stress-induced depression in rats[J]. Transl Psychiatry, 2019, 9(1):125. doi:10.1038/s41398-019-0448-z .
doi: 10.1038/s41398-019-0448-z
|
| [17] |
NESTLER E J, PEÑA C J, KUNDAKOVIC M, et al. Epigenetic basis of mental illness[J]. Neuroscientist, 2015, 22(5):447. doi:10.1177/1073858415608147 .
doi: 10.1177/1073858415608147
|
| [18] |
PERKINS D O, JEFFRIES C, SULLIVAN P. Expanding the ‘central dogma’: The regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia[J]. Mol Psychiatry, 2004, 10(1):69-78. doi:10.1038/sj.mp.4001577 .
doi: 10.1038/sj.mp.4001577
|
| [19] |
VARENDI K, KUMAR A, HÄRMA M A, et al. miR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF[J]. Cell Mol Life Sci, 2014, 71(22):4443-4456. doi:10.1007/s00018-014-1628-x .
doi: 10.1007/s00018-014-1628-x
|
| [20] |
FATHY N, LABIB M A, ESSAM R M, et al. The interplay between MiR-134/BDNF and LKB1/AMPK/SIRT1 accentuates the antidepressant efficacy of empagliflozin in ovariectomized rats[J]. ACS Chem Neurosci, 2024, 15(20):12. doi:10.1021/acschemneuro.4c00313 .
doi: 10.1021/acschemneuro.4c00313
|
| [21] |
ZHAO Y, CHEN Y, GUO C, et al. Chronic stress dysregulates the Hippo/YAP/14-3-3η pathway and induces mitochondrial damage in basolateral amygdala in a mouse model of depression[J]. Theranostics, 2024, 14(9):3653-3673. doi:10.7150/thno. 92676 .
doi: 10.7150/thno. 92676
|
| [22] |
周可林, 董硕, 薛小娜, 等. 基于TLR4/MyD88/NF-κB通路介导的NLRP3炎性小体活性探讨振腹推拿改善CUMS模型大鼠海马组织炎性损伤的手法机制研究[J]. 环球中医药, 2024, 17(10):1948-1954. doi:10.3969/j.issn.1674-1749.2024.10.004 .
doi: 10.3969/j.issn.1674-1749.2024.10.004
|
| [23] |
LIU M Y, WEI L L, ZHU X H, et al. Prenatal stress modulates HPA axis homeostasis of offspring through dentate TERT independently of glucocorticoids receptor[J]. Mol Psychiatry, 2023, 28(3):1383-1395. doi:10.1038/s41380-022-01898-9 .
doi: 10.1038/s41380-022-01898-9
|
| [24] |
MOLENAAR N M, TIEMEIER H, VAN ROSSUM E F C, et al. Prenatal maternal psychopathology and stress and offspring HPA axis function at 6 years[J]. Psychoneuroendocrinology, 2019, 99:120-127. doi:10.1016/j.psyneuen.2018.09.003 .
doi: 10.1016/j.psyneuen.2018.09.003
|
| [25] |
WANG R, ZHAO F, LI Y, et al. The effects of chronic unpredicted mild stress on maternal negative emotions and gut microbiota and metabolites in pregnant rats[J]. Peer J, 2023, 11:e15113. doi:10.7717/peerj.15113 .
doi: 10.7717/peerj.15113
|
| [26] |
ZHANG H, WEI H, QIN X, et al. Is anxiety and depression transmissible? Depressed mother rats transmit anxiety- and depression-like phenotypes to cohabited rat pups through gut microbiota assimilation[J]. J Affect Disord, 2024, 366:124-135. doi:10.1016/j.jad.2024.08.164 .
doi: 10.1016/j.jad.2024.08.164
|
| [27] |
LI X, SUN X, XIE J, et al. CircDYM ameliorates CUMS mice depressive-like behavior and inhibits hippocampal neurons injury via miR-497a-5p/NR3C1 axis[J]. Brain Res, 2022, 1787:147911. doi:10.1016/j.brainres.2022.147911 .
doi: 10.1016/j.brainres.2022.147911
|
| [28] |
HU N, ZHENG Y, LIU X, et al. CircKat6b mediates the antidepressant effect of esketamine by regulating astrocyte function[J]. Mol Neurobiol, 2025, 62(2):2587-2600. doi:10.1007/s12035-024-04420-0 .
doi: 10.1007/s12035-024-04420-0
|
| [29] |
刘永辉, 谭庆晶, 陈清, 等. miR-421靶向调控Menin/Caspase-3影响抑郁症的机制[J]. 实用医学杂志, 2024,40(4):453-459. doi:10.3969/j.issn.1006-5725.2024.04.003 .
doi: 10.3969/j.issn.1006-5725.2024.04.003
|
| [30] |
WANG Y, WANG X, XU Q, et al. CircRNA, lncRNA, and mRNA profiles of umbilical cord blood exosomes from preterm newborns showing bronchopulmonary dysplasia[J]. Eur J Pediatr, 2022, 181(9):3345-3365. doi:10.1007/s00431-022-04544-2 .
doi: 10.1007/s00431-022-04544-2
|
| [31] |
WANG F, JIANG M, CHI Y, et al. Exosomes from circRNA-Ptpn4 can modify ADSC treatment and repair nerve damage caused by cerebral infarction by shifting microglial M1/M2 polarization[J]. Mol Cell Biochem, 2024, 479(8):2081-2092. doi:10.1007/s11010-023-04824-x .
doi: 10.1007/s11010-023-04824-x
|
| [32] |
SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language[J]. Cell, 2011, 146(3):353-358. doi:10.1016/j.cell.2011.07.014 .
doi: 10.1016/j.cell.2011.07.014
|
| [33] |
MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338. doi:10.1038/nature11928 .
doi: 10.1038/nature11928
|
| [34] |
CHEN X, LIU X, ZUO X, et al. Circulating miR-134 is a potential biomarker for diagnosis and monitoring of major depressive disorder[J].Int J Clin Exp Pathol, 2020, 13(8):2082-2091.
|
| [35] |
WANG Y, HUANG Y, LUO X, et al. Deciphering the role of miRNA-134 in the pathophysiology of depression: A comprehensive review[J]. Heliyon, 2024, 10(19):e39026. doi:10.1016/j.heliyon.2024.e39026 .
doi: 10.1016/j.heliyon.2024.e39026
|
| [36] |
YANG T, NIE Z, SHU H, et al. The role of BDNF on neural plasticity in depression[J]. Front Cell Neurosci, 2020, 14:82. doi:10.3389/fncel.2020.00082 .
doi: 10.3389/fncel.2020.00082
|
| [37] |
CHEN X, LI H D, BU F T, et al. Circular RNA circFBXW4 suppresses hepatic fibrosis via targeting the miR-18b-3p/FBXW7 axis[J]. Theranostics, 2020, 10(11):4851-4870. doi:10.7150/thno. 42423 .
doi: 10.7150/thno. 42423
|
| [38] |
MATSUMOTO A, ONOYAMA I, SUNABORI T, et al. Fbxw7-dependent degradation of Notch is required for control of “stemness” and neuronal-glial differentiation in neural stem cells[J]. J Biol Chem, 2011, 286(15):13754-13764. doi:10.1074/jbc.M110.194936 .
doi: 10.1074/jbc.M110.194936
|
| [39] |
YANG Y, ZHOU X, LIU X, et al. Implications of FBXW7 in neurodevelopment and neurodegeneration: Molecular mechanisms and therapeutic potential[J]. Front Cell Neurosci, 2021, 15:736008. doi:10.3389/fncel.2021.736008 .
doi: 10.3389/fncel.2021.736008
|
| [40] |
PLANT D T, PAWLBY S, SHARP D, et al. Prenatal maternal depression is associated with offspring inflammation at 25 years: A prospective longitudinal cohort study[J]. Transl Psychiatry, 2016, 6(11):e936. doi:10.1038/tp.2015.155 .
doi: 10.1038/tp.2015.155
|
| [41] |
PARKER K J, et al. Maternal mediation, stress inoculation, and the development of neuroendocrine stress resistance in primates[J].Proc Natl Acad Sci U S A, 2006. doi:10.1073/pnas. 0506571103 .
doi: 10.1073/pnas. 0506571103
|