实用医学杂志 ›› 2025, Vol. 41 ›› Issue (20): 3288-3296.doi: 10.3969/j.issn.1006-5725.2025.20.020
• 综述 • 上一篇
收稿日期:2025-07-04
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
田利民
E-mail:tlm6666@sina.com
基金资助:
Wenyan ZHANG1,Feifei SHAO2,Limin. TIAN1,3(
)
Received:2025-07-04
Online:2025-10-25
Published:2025-11-05
Contact:
Limin. TIAN
E-mail:tlm6666@sina.com
摘要:
甲状腺功能障碍(TD)作为一种常见的内分泌系统疾病,其临床表现的非特异性及现有诊断方法的局限性,凸显了深入探究其发病机制并发现新型生物标志物的必要性。组学技术作为系统生物学的重要手段,通过整合高通量数据,为揭示其分子基础提供了新视角。该文系统综述了基因组学、转录组学、蛋白组学、代谢组学、脂质组学及多组学在TD中的最新进展,分别从DNA、RNA、蛋白质和代谢物等多维度探索了与TD相关的遗传变异及表观调控,探讨了TD的代谢紊乱特征及相关药物的作用机制及用于早期监测和诊断的生物标志物及药物靶点。该文旨在整合不同组学技术的优势及发现,全面揭示TD的复杂网络关联,为未来TD的临床管理及个性化诊治提供新思路和新见解。
中图分类号:
张文燕,邵菲菲,田利民. 组学技术在甲状腺功能障碍中的研究进展[J]. 实用医学杂志, 2025, 41(20): 3288-3296.
Wenyan ZHANG,Feifei SHAO,Limin. TIAN. Research progress of omics technologies in thyroid dysfunction[J]. The Journal of Practical Medicine, 2025, 41(20): 3288-3296.
表1
多组学技术鉴定药物在甲亢中的作用机制"
| 组学技术 | 药物 | 样本 | 靶点 | 通路 | 参考文献 |
|---|---|---|---|---|---|
| 转录组学 | 玄参提取物 | 大鼠肝脏 | LPAR3、IHH、CNTFR | Rap1、Hedgehog、Jak-STAT和PI3K-Akt信号通路 | [ |
| 蛋白组学 | 卡比马唑 | 人 尿样 | SERPIN B3、血浆激肽释放酶、S100-A9蛋白、α-1B-糖蛋白、转甲状腺素蛋白 | APP 、 AKT 信号通路 | [ |
| 蛋白组学 | 玄参 | 大鼠肝脏 | Aldh1a1、Aldh5a1、Cyp2c7、Hba2、Hba-a2、Ugt2a3、 ENSR-NOG00000048955 | ErbB信号通路 | [ |
| 代谢组学与网络药理学 | 海藻玉壶汤 | 大鼠血浆 | PTPN11、PIK3CD、EGFR、HRAS、PIK3CA、AKT1、 SRC、PIK3CB和PIK3R1 | HIF-1信号通路、EGFR酪氨酸激酶抑制剂抗性、脂质和动脉粥样硬化、内分泌抗性、甲状腺激素信号通路、糖尿病并发症中的AGE-RAGE信号通路等 | [ |
| 代谢组学与网络药理学 | 玄参 | 大鼠粪便 | PTEN、EP300和CCNB1 | HIF-1信号通路、甲状腺激素信号通路、催乳素信号通路、cGMP-PKG信号通路和 cAMP 信号通路 | [ |
| 转录组学与网络药理学 | 乙醇紫锥菊 | 小鼠肝脏 | EHHADH、ACOT2、 ACO-T8、SLC27A2、 EPHX2、ACACA和HMGCR | AMPK和PPAR信号通路 | [ |
| 蛋白质组学与转录组学 | 来自玄参的环烯醚萜类药物 | 大鼠肝脏 | Spp1、Thbs1、PI3K、 Akt | PI3K-Akt信号通路 | [ |
| [1] |
LEE S Y, PEARCE E N. Hyperthyroidism: A Review [J]. JAMA, 2023, 330(15): 1472-1483. doi:10.1001/jama.2023.19052
doi: 10.1001/jama.2023.19052 |
| [2] |
CHAKER L, RAZVI S, BENSENOR I M, et al. Hypothyroidism [J]. Nat Rev Dis Primers, 2022, 8(1): 30. doi:10.1038/s41572-022-00357-7
doi: 10.1038/s41572-022-00357-7 |
| [3] |
LI Y, TENG D, BA J, et al. Efficacy and Safety of Long-Term Universal Salt Iodization on Thyroid Disorders: Epidemiological Evidence from 31 Provinces of Chinese mainland [J]. Thyroid, 2020, 30(4): 568-579. doi:10.1089/thy.2019.0067
doi: 10.1089/thy.2019.0067 |
| [4] |
HASIN Y, SELDIN M, LUSIS A. Multi-omics approaches to disease [J]. Genome Biol, 2017, 18(1): 83. doi:10.1186/s13059-017-1215-1
doi: 10.1186/s13059-017-1215-1 |
| [5] |
KARCZEWSKI K J, SNYDER M P. Integrative omics for health and disease [J]. Nat Rev Genet, 2018, 19(5): 299-310. doi:10.1038/nrg.2018.4
doi: 10.1038/nrg.2018.4 |
| [6] |
CHEN C, WANG J, PAN D, et al. Applications of multi-omics analysis in human diseases [J]. MedComm, 2023, 4(4): e315. doi:10.1002/mco2.315
doi: 10.1002/mco2.315 |
| [7] |
WANG M H, CORDELL H J, VAN STEEN K. Statistical methods for genome-wide association studies [J]. Semin Cancer Biol, 2019, 55: 53-60. doi:10.1016/j.semcancer.2018.04.008
doi: 10.1016/j.semcancer.2018.04.008 |
| [8] |
LONG W, GUO F, YAO R, et al. Genetic and Phenotypic Characteristics of Congenital Hypothyroidism in a Chinese Cohort [J]. Front Endocrinol, 2021, 12: 705773. doi:10.3389/fendo.2021.705773
doi: 10.3389/fendo.2021.705773 |
| [9] |
HUANG M, LU X, DONG G, et al. Analysis of Mutation Spectra of 28 Pathogenic Genes Associated With Congenital Hypothyroidism in the Chinese Han Population [J]. Front Endocrinol, 2021, 12: 695426. doi:10.3389/fendo.2021.695426
doi: 10.3389/fendo.2021.695426 |
| [10] |
LARRIVÉE-VANIER S, JEAN-LOUIS M, MAGNE F, et al. Whole-Exome Sequencing in Congenital Hypothyroidism Due to Thyroid Dysgenesis [J]. Thyroid, 2022, 32(5): 486-495. doi:10.1089/thy.2021.0597
doi: 10.1089/thy.2021.0597 |
| [11] |
YANG L, OU Y N, WU B S, et al. Large-scale whole-exome sequencing analyses identified protein-coding variants associated with immune-mediated diseases in 350,770 adults [J]. Nat Commun, 2024, 15(1): 5924. doi:10.1038/s41467-024-49782-0
doi: 10.1038/s41467-024-49782-0 |
| [12] |
SHEN J, PAN J, YU G, et al. Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis [J]. J Cell Mol Med, 2024, 28(17): e70045. doi:10.1111/jcmm.70045
doi: 10.1111/jcmm.70045 |
| [13] |
ALEJIELAT R, KHALEEL A, BATARSEH Y S, et al. SNP rs11185644 in RXRA gene and SNP rs2235544 in DIO1 gene predict dosage requirements in a cross-sectional sample of hypothyroid patients [J]. BMC Endocr Disord, 2023, 23(1): 167. doi:10.1186/s12902-023-01425-z
doi: 10.1186/s12902-023-01425-z |
| [14] |
ZHANG C, ZHANG Q, QIN L, et al. Dioscin Ameliorates Experimental Autoimmune Thyroiditis via the mTOR and TLR4/NF-κB Signaling [J]. Drug Des Devel Ther, 2023, 17: 2273-2285. doi:10.2147/dddt.s410901
doi: 10.2147/dddt.s410901 |
| [15] |
ZHOU Y Y, ZHAO S Y, HUANG F J, et al. JPT2 in subclinical hypothyroidism-related miscarriage as a transcription co-factor: Involvement of LEPR/STAT3 activation [J]. J Endocrinol Invest, 2024, 47(10): 2521-2537. doi:10.1007/s40618-024-02343-0
doi: 10.1007/s40618-024-02343-0 |
| [16] | 张宁, 李自辉, 赵洪伟, 等. 基于转录组测序技术研究玄参提取物干预阴虚火旺甲状腺功能亢进大鼠的分子机制 [J]. 中华中医药杂志, 2022, 37(2): 709-713. |
| [17] |
PENG H, XIONG S, DING X, et al. Long non‑coding RNA expression profiles identify lncRNA‑XLOC_I2_006631 as a potential novel blood biomarker for Hashimoto's thyroiditis [J]. Int J Mol Med, 2020, 46(6): 2172-2184. doi:10.3892/ijmm.2020.4755
doi: 10.3892/ijmm.2020.4755 |
| [18] |
ZHENG H, XU J, CHU Y, et al. A Global Regulatory Network for Dysregulated Gene Expression and Abnormal Metabolic Signaling in Immune Cells in the Microenvironment of Graves' Disease and Hashimoto's Thyroiditis [J]. Front Immunol, 2022, 13: 879824. doi:10.3389/fimmu.2022.879824
doi: 10.3389/fimmu.2022.879824 |
| [19] |
GULATI G S, D'SILVA J P, LIU Y, et al. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics [J]. Nat Rev Mol Cell Biol, 2025, 26(1): 11-31. doi:10.1038/s41580-024-00768-2
doi: 10.1038/s41580-024-00768-2 |
| [20] |
PIñEIRO A J, HOUSER A E, JI A L. Research Techniques Made Simple: Spatial Transcriptomics [J]. J Invest Dermatol, 2022, 142(4): 993-1001.e1. doi:10.1016/j.jid.2021.12.014
doi: 10.1016/j.jid.2021.12.014 |
| [21] |
TANG F, BARBACIORU C, WANG Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell [J]. Nat Methods, 2009, 6(5): 377-382. doi:10.1038/nmeth.1315
doi: 10.1038/nmeth.1315 |
| [22] |
STåHL P L, SALMéN F, VICKOVIC S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics [J]. Science, 2016, 353(6294): 78-82. doi:10.1126/science.aaf2403
doi: 10.1126/science.aaf2403 |
| [23] |
BLUDAU I, AEBERSOLD R. Proteomic and interactomic insights into the molecular basis of cell functional diversity [J]. Nat Rev Mol Cell Biol, 2020, 21(6): 327-340. doi:10.1038/s41580-020-0231-2
doi: 10.1038/s41580-020-0231-2 |
| [24] |
BENABDELKAMEL H, MASOOD A, EKHZAIMY A A, et al. Proteomics Profiling of the Urine of Patients with Hyperthyroidism after Anti-Thyroid Treatment [J]. Molecules, 2021, 26(7): 2022. doi:10.3390/molecules26071991
doi: 10.3390/molecules26071991 |
| [25] | 张宁, 李自辉, 赵洪伟, 等. 基于iTRAQ技术的玄参对阴虚火旺甲状腺功能亢进大鼠蛋白质组学研究 [J]. 中华中医药杂志, 2021, 36(7): 4207-4211. |
| [26] |
GONZÁLEZ-AROSTEGUI L G, MUÑOZ-PRIETO A, RUBIO C P, et al. Changes of the salivary and serum proteome in canine hypothyroidism [J]. Domest Anim Endocrinol, 2024, 86: 106825. doi:10.1016/j.domaniend.2023.106825
doi: 10.1016/j.domaniend.2023.106825 |
| [27] |
MASOOD A, BENABDELKAMEL H, JAMMAH A A, et al. Identification of Protein Changes in the Urine of Hypothyroid Patients Treated with Thyroxine Using Proteomics Approach [J]. ACS Omega, 2021, 6(3): 2367-2378. doi:10.1021/acsomega.0c05686
doi: 10.1021/acsomega.0c05686 |
| [28] |
ZHANG G F, SADHUKHAN S, TOCHTROP G P, et al. Metabolomics, pathway regulation, and pathway discovery [J]. J Biol Chem, 2011, 286(27): 23631-23635. doi:10.1074/jbc.r110.171405
doi: 10.1074/jbc.r110.171405 |
| [29] |
TOKARZ J, HAID M, CECIL A, et al. Endocrinology Meets Metabolomics: Achievements, Pitfalls, and Challenges [J]. Trends Endocrinol Metab, 2017, 28(10): 705-721. doi:10.1016/j.tem.2017.07.001
doi: 10.1016/j.tem.2017.07.001 |
| [30] |
WANG R, LI B, LAM S M, et al. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression [J]. J Genet Genomics, 2020, 47(2): 69-83. doi:10.1016/j.jgg.2019.11.009
doi: 10.1016/j.jgg.2019.11.009 |
| [31] | 厉颖, 李灿委, 范孟然, 等. 酒精性肝病的代谢组学研究进展 [J]. 实用医学杂志, 2021, 37(7): 944-947. |
| [32] |
SHAO F, LI R, GUO Q, et al. Plasma Metabolomics Reveals Systemic Metabolic Alterations of Subclinical and Clinical Hypothyroidism [J]. J Clin Endocrinol Metab, 2022, 108(1): 13-25. doi:10.1210/clinem/dgac555
doi: 10.1210/clinem/dgac555 |
| [33] |
JIANG X, ZHAO X, GU X, et al. Serum metabolomic analysis in patients with Hashimoto's thyroiditis [J]. Front Endocrinol, 2022, 13: 1046159. doi:10.3389/fendo.2022.1046159
doi: 10.3389/fendo.2022.1046159 |
| [34] |
MUÑOZ-PRIETO A, GONZÁLEZ-AROSTEGUI L G, RUBIĆ I, et al. Untargeted metabolomic profiling of serum in dogs with hypothyroidism [J]. Res Vet Sci, 2021, 136: 6-10. doi:10.1016/j.rvsc.2021.01.023
doi: 10.1016/j.rvsc.2021.01.023 |
| [35] |
BILLIET B, CHAO DE LA BARCA J M, FERRé M, et al. A Tear Metabolomic Profile Showing Increased Ornithine Decarboxylase Activity and Spermine Synthesis in Thyroid-Associated Orbitopathy [J]. J Clin Med, 2022, 11(2): 301. doi:10.3390/jcm11020404
doi: 10.3390/jcm11020404 |
| [36] |
PIRAS C, PIBIRI M, LEONI V P, et al. Analysis of metabolomics profile in hypothyroid patients before and after thyroid hormone replacement [J]. J Endocrinol Invest, 2021, 44(6): 1309-1319. doi:10.1007/s40618-020-01434-y
doi: 10.1007/s40618-020-01434-y |
| [37] |
BENABDELKAMEL H, JABER M A, DAHABIYEH L A, et al. Metabolomic profile of patients on levothyroxine treatment for hypothyroidism [J]. Eur Thyroid J, 2023, 12(4): e230056. doi:10.1530/etj-23-0062
doi: 10.1530/etj-23-0062 |
| [38] |
LUO Z, LEI Y, ZENG L, et al. Iodine-131 intervention in hyperthyroidism with hepatic insufficiency: Metabolomic evaluation [J]. Biomed Pharmacother, 2024, 173: 116300. doi:10.1016/j.biopha.2024.116300
doi: 10.1016/j.biopha.2024.116300 |
| [39] |
CHEN Z, LIN Z, GAO Y, et al. Serum metabolite profiles of thyroid autoimmunity patients in early pregnancy [J]. PeerJ, 2024, 12: e18534. doi:10.7717/peerj.18534
doi: 10.7717/peerj.18534 |
| [40] |
HAN X. Lipidomics for studying metabolism [J]. Nat Rev Endocrinol, 2016, 12(11): 668-679. doi:10.1038/nrendo.2016.98
doi: 10.1038/nrendo.2016.98 |
| [41] | 王佳慧, 郑可, 李雪梅. 脂质组学在肾脏疾病中的应用与进展 [J]. 实用医学杂志, 2025, 41(1): 1-6. |
| [42] |
BŁAŻEWICZ A, KIEŁBUS M, SKóRZYŃSKA-DZIDUSZKO K, et al. Application of Human Plasma Targeted Lipidomics and Analysis of Toxic Elements to Capture the Metabolic Complexities of Hypothyroidism [J]. Molecules, 2024, 29(21): 5115. doi:10.3390/molecules29215169
doi: 10.3390/molecules29215169 |
| [43] |
DONG H, ZHOU W, YAN X, et al. Serum Lipidomic Analysis Reveals Biomarkers and Metabolic Pathways of Thyroid Dysfunction [J]. ACS Omega, 2023, 8(11): 10355-10364. doi:10.1021/acsomega.2c08048
doi: 10.1021/acsomega.2c08048 |
| [44] |
CASTAÑO D, RATTANASOPA C, MONTEIRO-CARDOSO V F, et al. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects [J]. Adv Drug Deliv Rev, 2020, 159: 54-93. doi:10.1016/j.addr.2020.04.013
doi: 10.1016/j.addr.2020.04.013 |
| [45] | RIIS K R, LARSEN C B, MEDICI B R, et al. Hypothyroid women have persistently higher oxidative stress compared to healthy controls [J]. Eur Thyroid J, 2023, 12(6): e230077. |
| [46] |
LI J, XU Y, SUN Z, et al. Differential lipids in pregnant women with subclinical hypothyroidism and their correlation to the pregnancy outcomes [J]. Sci Rep, 2021, 11(1): 19689. doi:10.1038/s41598-021-99252-6
doi: 10.1038/s41598-021-99252-6 |
| [47] | 蔡琰钧, 许雅娟, 李晶晶, 等. 妊娠合并甲状腺功能减退症患者血浆脂质组学分析及临床意义 [J]. 实用妇产科杂志, 2023, 39(10): 787-791. |
| [48] |
JIANG W, LU G, QIAO T, et al. Integrated microbiome and metabolome analysis reveals a distinct microbial and metabolic signature in Graves' disease and hypothyroidism [J]. Heliyon, 2023, 9(11): e21463. doi:10.1016/j.heliyon.2023.e21463
doi: 10.1016/j.heliyon.2023.e21463 |
| [49] |
ZHANG C, XU Y, ZHANG M, et al. An exploratory study on the metagenomic and proteomic characterization of hypothyroidism in the first half of pregnancy and correlation with Th1/Th2 balance [J]. Front Immunol, 2025, 16: 1500866. doi:10.3389/fimmu.2025.1500866
doi: 10.3389/fimmu.2025.1500866 |
| [50] |
CHEN X, CHEN H. Proteomics and transcriptomics combined reveal specific immunological markers in autoimmune thyroid disease [J]. Front Immunol, 2024, 15: 1531402. doi:10.3389/fimmu.2024.1531402
doi: 10.3389/fimmu.2024.1531402 |
| [51] |
HUANG W, LIU X, LI X, et al. Integrating network pharmacology, molecular docking and non-targeted serum metabolomics to illustrate pharmacodynamic ingredients and pharmacologic mechanism of Haizao Yuhu Decoction in treating hyperthyroidism [J]. Front Endocrinol, 2024, 15: 1438821. doi:10.3389/fendo.2024.1438821
doi: 10.3389/fendo.2024.1438821 |
| [52] |
ZHANG N, LU F, LI Z, et al. Effects of Radix Scrophulariae on Hyperthyroidism Assessed by Metabonomics and Network Pharmacology [J]. Front Pharmacol, 2021, 12: 727735. doi:10.3389/fphar.2021.727735
doi: 10.3389/fphar.2021.727735 |
| [53] |
ZHU Y, ZHANG J, WANG C, et al. Ameliorative Effect of Ethanolic Echinacea purpurea against Hyperthyroidism-Induced Oxidative Stress via AMRK and PPAR Signal Pathway Using Transcriptomics and Network Pharmacology Analysis [J]. Int J Mol Sci, 2022, 24(1): 688. doi:10.3390/ijms24010187
doi: 10.3390/ijms24010187 |
| [54] |
ZHANG N, LIU S, LU X, et al. Transcriptomic and proteomic investigations identify PI3K-akt pathway targets for hyperthyroidism management in rats via polar iridoids from radix Scrophularia [J]. Heliyon, 2024, 10(12): e33072. doi:10.1016/j.heliyon.2024.e33072
doi: 10.1016/j.heliyon.2024.e33072 |
| [55] |
LI H, QI F, LI D, et al. Acupuncture attenuates experimental autoimmune thyroiditis by modulating intestinal microbiota and palmitic acid metabolism [J]. Front Immunol, 2025, 16: 1541728. doi:10.3389/fimmu.2025.1541728
doi: 10.3389/fimmu.2025.1541728 |
| [56] |
ZHENG Y, LIU Y, YANG J, et al. Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials [J]. Nat Biotechnol, 2024, 42(7): 1133-1149. doi:10.1038/s41587-023-01934-1
doi: 10.1038/s41587-023-01934-1 |
| [1] | 王立坤,郝琦,金炜涵,董时正,武雪亮,胡晓峰,武亮,荀敬,马洪庆. 多组学与人工智能在预测和诊断结直肠癌肝转移中的应用[J]. 实用医学杂志, 2025, 41(7): 1070-1078. |
| [2] | 游燕,崔红静,彭程程,姜丽,张启云,李冰涛,徐国良. 葛根芩连汤含药血清调节缺氧诱导L02细胞糖代谢的影响及代谢机制[J]. 实用医学杂志, 2025, 41(7): 936-943. |
| [3] | 曹玲春,孟凡亮,盛晓安. 非小细胞肺癌免疫治疗相关甲状腺功能障碍的危险因素分析及模型构建[J]. 实用医学杂志, 2025, 41(17): 2705-2714. |
| [4] | 杨潇,王涛,王伟,彭耀辉,陈妍,曾海平,杨宝. 结直肠癌患者的血清脂质组学特点及其诊断价值[J]. 实用医学杂志, 2025, 41(11): 1742-1750. |
| [5] | 王佳慧,郑可,李雪梅. 脂质组学在肾脏疾病中的应用与进展[J]. 实用医学杂志, 2025, 41(1): 1-6. |
| [6] | 王晴雯,张淑雅,熊维霖,胡晓磊,李紫薇,郭庆寅. 儿童过敏性紫癜口腔菌群及其代谢产物特征[J]. 实用医学杂志, 2024, 40(9): 1244-1250. |
| [7] | 梁冬露,马礼兵. 呼出气分析技术在呼吸系统疾病中的应用及进展[J]. 实用医学杂志, 2024, 40(22): 3124-3129. |
| [8] | 强晓,耿贝贝,刘四喜,夏婷. 转录组学技术在急性白血病诊治中的应用研究进展[J]. 实用医学杂志, 2023, 39(22): 3010-3014. |
| [9] | 雷榆 胡亚欣 余蕾 程明亮 程卓 丛硕 蒲茜 郑林 . 肝内胆汁淤积对小鼠回盲部胆汁酸谱及肠道菌群的影响 [J]. 实用医学杂志, 2023, 39(10): 1232-1236. |
| [10] | 李荔 周嘉禾 李末娟 钟明琳 张小伟 许秋仪 梁莲云. 多囊卵巢综合征表观遗传学、代谢组学、肠道菌群新机制前沿展望 [J]. 实用医学杂志, 2022, 38(16): 1987-1992. |
| [11] | 叶明君 戴勇 汤冬娥 李强 尹良红. 腹膜透析代谢组学研究进展 [J]. 实用医学杂志, 2022, 38(1): 1-6. |
| [12] | 厉颖 李灿委 范孟然 刘卫红 高鹏飞..
酒精性肝病的代谢组学研究进展
[J]. 实用医学杂志, 2021, 37(7): 944-947. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

