1 |
WEISER T G, REGENBOGEN S E, THOMPSON K D, et al. An estimation of the global volume of surgery: A modelling strategy based on available data[J]. Lancet, 2008, 372(9633): 139-144. doi:10.1016/s0140-6736(08)60878-8
doi: 10.1016/s0140-6736(08)60878-8
|
2 |
HEDENSTIERNA G, EDMARK L. Mechanisms of atelectasis in the perioperative period[J]. Best Pract Res Clin Anaesthesiol, 2010, 24(2): 157-169. doi:10.1016/j.bpa.2009.12.002
doi: 10.1016/j.bpa.2009.12.002
|
3 |
NETO A S, HEMMES S N T, BARBAS C S V, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: A systematic review and meta-analysis[J]. Lancet Respir Med, 2014, 2(12): 1007-1015. doi:10.1016/s2213-2600(14)70228-0
doi: 10.1016/s2213-2600(14)70228-0
|
4 |
SCHULTZ M J, HEMMES S N T, NETO A S, et al. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS-an observational study in 29 countries[J]. Eur J Anaesthesiol, 2017,34(8):492-507. doi:10.1097/eja.0000000000000646
doi: 10.1097/eja.0000000000000646
|
5 |
FERNANDEZ-BUSTAMANTE A, FRENDL G, SPRUNG J, et al. Postoperative pulmonary complications, early mortality, and hospital stay following noncardiothoracic surgery: A multicenter study by the perioperative research network investigators[J]. JAMA Surg, 2017, 152(2): 157-166. doi:10.1001/jamasurg.2016.4065
doi: 10.1001/jamasurg.2016.4065
|
6 |
王月兰, 杨建军, 米卫东. 围手术期肺保护性通气策略临床应用专家共识[J]. 中华麻醉学杂志, 2020, 40(5): 513-519.
|
7 |
PEREIRA S M, TUCCI M R, MORAIS C C A, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis[J]. Anesthesiology, 2018, 129(6): 1070-1081. doi:10.1097/aln.0000000000002435
doi: 10.1097/aln.0000000000002435
|
8 |
刘学松. EIT指导合并COPD的ARDS患者PEEP的选择及不同PEEP水平对ARDS患者呼吸和循环功能的影响[D]. 广州:广州医科大学,2021.
|
9 |
KE X Y, HOU W, HUANG Q, et al. Advances in electrical impedance tomography-based brain imaging[J]. Mil Med Res, 2022, 9(1): 10. doi:10.1186/s40779-022-00370-7
doi: 10.1186/s40779-022-00370-7
|
10 |
WALSH B K, SMALLWOOD C D. Electrical impedance tomography during mechanical ventilation[J]. Respir Care, 2016, 61(10): 1417-1424. doi:10.4187/respcare.04914
doi: 10.4187/respcare.04914
|
11 |
RICHARD J C, JANIER M, LAVENNE F, et al. Quantitative assessment of regional alveolar ventilation and gas volume using 13N-N2 washout and PET[J]. J Nucl Med, 2005, 46(8): 1375-1383.
|
12 |
RICHARD J C, LE BARS D, COSTES N, et al. Alveolar recruitment assessed by positron emission tomography during experimental acute lung injury[J]. Intensive Care Med, 2006, 32: 1889-1894. doi:10.1007/s00134-006-0331-2
doi: 10.1007/s00134-006-0331-2
|
13 |
RICHARD J C, POUZOT C, GROS A, et al. Electrical impedance tomography compared to positron emission tomography for the measurement of regional lung ventilation: An experimental study[J]. Crit Care, 2009, 13: 1-9. doi:10.1186/cc7900
doi: 10.1186/cc7900
|
14 |
GRIMNES S, MARTINSEN O G. Bioimpedance and Bioelectricity Basics [M]. New York: Academic Press, 2015. doi:10.1016/b978-0-12-411470-8.00011-8
doi: 10.1016/b978-0-12-411470-8.00011-8
|
15 |
LEONHARDT S, LACHMANN B. Electrical impedance tomography: The holy grail of ventilation and perfusion monitoring?[J]. Intensive Care Med, 2012, 38: 1917-1929. doi:10.1007/s00134-012-2684-z
doi: 10.1007/s00134-012-2684-z
|
16 |
WOO E J, SEO J K. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging[J]. Physiol Meas, 2008, 29(10): R1. doi:10.1088/0967-3334/29/10/r01
doi: 10.1088/0967-3334/29/10/r01
|
17 |
FRANCHINEAU G, JONKMAN A H, PIQUILLOUD L, et al. Electrical impedance tomography to monitor hypoxemic respiratory failure[J]. Am J Respir Crit Care Med, 2024, 209(6): 670-682. doi:10.1164/rccm.202306-1118ci
doi: 10.1164/rccm.202306-1118ci
|
18 |
SCARAMUZZO G, PAVLOVSKY B, ADLER A, et al. Electrical impedance tomography monitoring in adult ICU patients: State-of-the-art, recommendations for standardized acquisition, processing, and clinical use, and future directions[J]. Criti Care, 2024, 28(1): 377. doi:10.1186/s13054-024-05173-x
doi: 10.1186/s13054-024-05173-x
|
19 |
FRERICHS I, AMATO M B P, VAN KAAM A H, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: Consensus statement of the TRanslational EIT development study group[J]. Thorax, 2017, 72(1): 83-93. doi:10.1136/thoraxjnl-2016-208357
doi: 10.1136/thoraxjnl-2016-208357
|
20 |
FERGUSON N D, FAN E, CAMPOROTA L, et al. The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material[J]. Intensive Care Med, 2012, 38: 1573-1582. doi:10.1007/s00134-012-2682-1
doi: 10.1007/s00134-012-2682-1
|
21 |
ZHAO Z, CHANG M Y, CHANG M Y, et al. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-Volume curve in severe acute respiratory distress syndrome[J]. Ann Intensive Care, 2019, 9: 1-9. doi:10.1186/s13613-019-0484-0
doi: 10.1186/s13613-019-0484-0
|
22 |
LI J, ZHU M, GUO Y, et al. Dynamic EIT technology for real-time non-invasive monitoring of acute pulmonary embolism: A porcine model experiment[J]. Respir Res, 2025, 26(1): 7. doi:10.1186/s12931-024-03090-9
doi: 10.1186/s12931-024-03090-9
|
23 |
FUTIER E, CONSTANTIN J M, PAUGAM-BURTZ C, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery[J]. N Engl J Med, 2013, 369(5): 428-437. doi:10.1056/nejmoa1301082
doi: 10.1056/nejmoa1301082
|
24 |
FUMAGALLI J, BERRA L, ZHANG C, et al. Transpulmonary pressure describes lung morphology during decremental positive end-expiratory pressure trials in obesity[J]. Critical Care Med, 2017, 45(8): 1374-1381. doi:10.1097/ccm.0000000000002460
doi: 10.1097/ccm.0000000000002460
|
25 |
KARSTEN J, GRUSNICK C, PAARMANN H, et al. Positive end‐expiratory pressure titration at bedside using electrical impedance tomography in post‐operative cardiac surgery patients[J]. Acta Anaesthesiol Scand, 2015, 59(6): 723-732. doi:10.1111/aas.12518
doi: 10.1111/aas.12518
|
26 |
MAISCH S, REISSMANN H, FUELLEKRUG B, et al. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients[J]. Anesth Analg, 2008, 106(1): 175-181. doi:10.1213/01.ane.0000287684.74505.49
doi: 10.1213/01.ane.0000287684.74505.49
|
27 |
PIRRONE M, FISHER D, CHIPMAN D, et al. Recruitment maneuvers and positive end-expiratory pressure titration in morbidly obese ICU patients[J]. Crit Care Med, 2016, 44(2): 300-307. doi:10.1097/ccm.0000000000001387
doi: 10.1097/ccm.0000000000001387
|
28 |
NESTLER C, SIMON P, PETROFF D, et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: A randomized controlled clinical trial using electrical impedance tomography[J]. Br J Anaesth, 2017, 119(6): 1194-1205. doi:10.1093/bja/aex192
doi: 10.1093/bja/aex192
|
29 |
FERRANDO C, TUSMAN G, SUAREZ‐SIPMANN F, et al. Individualized lung recruitment maneuver guided by pulse‐oximetry in anesthetized patients undergoing laparoscopy: A feasibility study[J]. Acta Anaesthesiol Scand, 2018, 62(5): 608-619. doi:10.1111/aas.13082
doi: 10.1111/aas.13082
|
30 |
MA X, FU Y, PIAO X, et al. Individualised positive end-expiratory pressure titrated intra-operatively by electrical impedance tomography optimises pulmonary mechanics and reduces postoperative atelectasis: A randomised controlled trial[J]. Eur J Anaesth, 2023, 40(11): 805-816. doi:10.1097/eja.0000000000001901
doi: 10.1097/eja.0000000000001901
|
31 |
GIRRBACH F, PETROFF D, SCHULZ S, et al. Individualised positive end-expiratory pressure guided by electrical impedance tomography for robot-assisted laparoscopic radical prostatectomy: A prospective, randomised controlled clinical trial[J]. Br J Anaesth, 2020, 125(3): 373-382. doi:10.1016/j.bja.2020.05.041
doi: 10.1016/j.bja.2020.05.041
|
32 |
COSTA E L V, CHAVES C N, GOMES S, et al. Real-time detection of pneumothorax using electrical impedance tomography[J]. Critical Care Med, 2008, 36(4): 1230-1238. doi:10.1097/ccm.0b013e31816a0380
doi: 10.1097/ccm.0b013e31816a0380
|
33 |
ZHU C, YAO J W, AN L X, et al. Effects of intraoperative individualized PEEP on postoperative atelectasis in obese patients: study protocol for a prospective randomized controlled trial[J]. Trials, 2020, 21: 1-12. doi:10.1186/s13063-020-04565-y
doi: 10.1186/s13063-020-04565-y
|
34 |
NESTLER C, SIMON P, PETROFF D, et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: A randomized controlled clinical trial using electrical impedance tomography[J]. Br J Anaesth, 2017, 119(6): 1194-1205. doi:10.1093/bja/aex192
doi: 10.1093/bja/aex192
|
35 |
汤敏誉,梁鹏. 胸科手术中单肺通气肺萎陷技术的应用进展[J]. 实用医学杂志,2024,40(20):2813-2818. doi:10.3969/j.issn.1006-5725.2024.20.001
doi: 10.3969/j.issn.1006-5725.2024.20.001
|
36 |
黄伟坚, 李洋, 王海彦, 等. 基于驱动压的肺保护性通气策略在婴儿单肺通气中的应用效果[J]. 实用医学杂志, 2024, 40(3): 360-364. doi:10.3969/j.issn.1006-5725.2024.03.014
doi: 10.3969/j.issn.1006-5725.2024.03.014
|
37 |
王颍骅, 潘雁, 杨敏. 电阻抗成像技术在不停跳冠脉旁路移植术后肺复张中的临床应用[J]. 上海交通大学学报 (医学版), 2018, 38(6): 653-657. doi:10.3969/j.issn.1674-8115.2018.06.012?
doi: 10.3969/j.issn.1674-8115.2018.06.012?
|