1 |
ZHENG H, AN M, LUO Y, et al. PDGFRα(+)ITGA11(+) fibroblasts foster early-stage cancer lymphovascular invasion and lymphatic metastasis via ITGA11-SELE interplay [J]. Cancer Cell, 2024, 42(4): 682-700.e12. doi:10.1016/j.ccell.2024.02.002
doi: 10.1016/j.ccell.2024.02.002
|
2 |
LIN Y, ZHENG H, JIA L, et al. Integrin α6-containing extracellular vesicles promote lymphatic remodelling for pre-metastatic niche formation in lymph nodes via interplay with CD151 [J]. J Extracell Vesicles, 2024, 13(10): e12518. doi:10.1002/jev2.12518
doi: 10.1002/jev2.12518
|
3 |
LIU S, CHEN X, LIN T, et al. Lymphatic metastasis of bladder cancer: Molecular mechanisms, diagnosis and targeted therapy [J]. Cancer Lett, 2021, 505: 13-23. doi:10.1016/j.canlet.2021.02.010
doi: 10.1016/j.canlet.2021.02.010
|
4 |
CHEN C, ZHENG H, LUO Y, et al. SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder cancer [J]. J Clin Invest, 2021, 131(8):e146431. doi:10.1172/jci146431
doi: 10.1172/jci146431
|
5 |
GARCíA-SILVA S, BENITO-MARTÍN A, NOGUÉS L, et al. Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism [J]. Nat Cancer, 2021, 2(12): 1387-1405. doi:10.1038/s43018-021-00272-y
doi: 10.1038/s43018-021-00272-y
|
6 |
MORI K, SCHUETTFORT V M, KATAYAMA S, et al. Prognostic Role of Preoperative Vascular Cell Adhesion Molecule-1 Plasma Levels in Urothelial Carcinoma of the Bladder Treated With Radical Cystectomy [J]. Ann Surg Oncol, 2022, 29(8): 5307-5316. doi:10.1245/s10434-022-11575-4
doi: 10.1245/s10434-022-11575-4
|
7 |
ZHANG Q, LIU S, WANG H, et al. ETV4 Mediated Tumor-Associated Neutrophil Infiltration Facilitates Lymphangiogenesis and Lymphatic Metastasis of Bladder Cancer [J]. Adv Sci (Weinh), 2023, 10(11): e2205613. doi:10.1002/advs.202370065
doi: 10.1002/advs.202370065
|
8 |
KOINA M E, BAXTER L, ADAMSON S J, et al. Evidence for lymphatics in the developing and adult human choroid [J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 1310-1327. doi:10.1167/iovs.15-18011
doi: 10.1167/iovs.15-18011
|
9 |
FAN X, YANG Y, CHEN C, et al. Pervasive translation of circular RNAs driven by short IRES-like elements [J]. Nat Commun, 2022, 13(1): 3751. doi:10.1038/s41467-022-31327-y
doi: 10.1038/s41467-022-31327-y
|
10 |
TAKALLOU S, PUCHACZ N, ALLARD D, et al. IRES-mediated translation in bacteria [J]. Biochem Biophys Res Commun, 2023, 641: 110-115. doi:10.1016/j.bbrc.2022.12.022
doi: 10.1016/j.bbrc.2022.12.022
|
11 |
CHEN C K, CHENG R, DEMETER J, et al. Structured elements drive extensive circular RNA translation [J]. Mol Cell, 2021, 81(20): 4300-4318.e13. doi:10.1016/j.molcel.2021.07.042
doi: 10.1016/j.molcel.2021.07.042
|
12 |
LI Y, WANG Z, SU P, et al. circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway [J]. Mol Ther, 2022, 30(1): 415-430. doi:10.1016/j.ymthe.2021.08.026
doi: 10.1016/j.ymthe.2021.08.026
|
13 |
BEHRINGER A, STOIMENOVSKI D, PORSCH M, et al. Relationship of micro-RNA, mRNA and eIF Expression in Tamoxifen-Adapted MCF-7 Breast Cancer Cells: Impact of miR-1972 on Gene Expression, Proliferation and Migration [J]. Biomolecules, 2022, 12(7):916. doi:10.3390/biom12070916
doi: 10.3390/biom12070916
|
14 |
XU Y, GAO Z, SUN X, et al. The role of circular RNA during the urological cancer metastasis: Exploring regulatory mechanisms and potential therapeutic targets [J]. Cancer Metastasis Rev, 2024, 43(3): 1055-1074. doi:10.1007/s10555-024-10182-x
doi: 10.1007/s10555-024-10182-x
|
15 |
AN M, ZHENG H, HUANG J, et al. Aberrant Nuclear Export of circNCOR1 Underlies SMAD7-Mediated Lymph Node Metastasis of Bladder Cancer [J]. Cancer Res, 2022, 82(12): 2239-2253. doi:10.1158/0008-5472.can-21-4349
doi: 10.1158/0008-5472.can-21-4349
|
16 |
PAN X, CHEN K, GAO W, et al. Circular RNA circBNC2 inhibits tumorigenesis by modulating ferroptosis and acts as a nanotherapeutic target in prostate cancer [J]. Mol Cancer, 2025, 24(1): 29. doi:10.1186/s12943-025-02234-9
doi: 10.1186/s12943-025-02234-9
|
17 |
YANG X, YE T, LIU H, et al. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer [J]. Mol Cancer, 2021, 20(1): 4. doi:10.1186/s12943-020-01300-8
doi: 10.1186/s12943-020-01300-8
|
18 |
MARQUES R, LACERDA R, ROMÃO L, et al. Internal Ribosome Entry Site (IRES)-Mediated Translation and Its Potential for Novel mRNA-Based Therapy Development [J]. Biomedicines, 2022, 10(8):1865. doi:10.3390/biomedicines10081865
doi: 10.3390/biomedicines10081865
|
19 |
HWANG H J, KIM Y K. Molecular mechanisms of circular RNA translation [J]. Exp Mol Med, 2024, 56(6): 1272-1280. doi:10.1038/s12276-024-01220-3
doi: 10.1038/s12276-024-01220-3
|
20 |
CHEN L, WANG C, SUN H, et al. The bioinformatics toolbox for circRNA discovery and analysis [J]. Brief Bioinform, 2021, 22(2): 1706-1728. doi:10.1093/bib/bbaa001
doi: 10.1093/bib/bbaa001
|
21 |
ZHAO X, ZHONG Y, WANG X, et al. Advances in Circular RNA and Its Applications [J]. Int J Med Sci, 2022, 19(6): 975-985. doi:10.7150/ijms.71840
doi: 10.7150/ijms.71840
|
22 |
LUíS C, SOARES R, FERNANDES R, et al. Cell-adhesion Molecules as Key Mechanisms of Tumor Invasion: The Case of Breast Cancer [J]. Curr Mol Med, 2023, 23(2): 147-160. doi:10.2174/1566524021666210806155231
doi: 10.2174/1566524021666210806155231
|
23 |
SMART J A, OLEKSAK J E, HARTSOUGH E J, et al. Cell Adhesion Molecules in Plasticity and Metastasis [J]. Mol Cancer Res, 2021, 19(1): 25-37. doi:10.1158/1541-7786.mcr-20-0595
doi: 10.1158/1541-7786.mcr-20-0595
|
24 |
陈立智, 胡军, 傅厚丰. L1细胞黏附分子在结肠癌中表达的临床意义和生物学作用 [J]. 实用医学杂志, 2020, 36(19): 2690-2695.
|
25 |
BUI T M, WIESOLEK H L, SUMAGIN R, et al. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis [J]. J Leukoc Biol, 2020, 108(3): 787-799. doi:10.1002/jlb.2mr0220-549r
doi: 10.1002/jlb.2mr0220-549r
|
26 |
BASSIOUNI W, ALI M A M, SCHULZ R, et al. Multifunctional intracellular matrix metalloproteinases: Implications in disease [J]. FEBS J, 2021, 288(24): 7162-7182. doi:10.1111/febs.15701
doi: 10.1111/febs.15701
|
27 |
王子文, 赵文静, 晁亚丽. D-二聚体,乳酸联合可溶性血小板内皮黏附分子-1对脓毒症相关弥散性血管内凝血患者预后不良的预测研究 [J]. 实用医学杂志, 2023, 39(18): 2379-2383.
|
28 |
POWER G, FERREIRA-SANTOS L, MARTINEZ-LEMUS L A, et al. Integrating molecular and cellular components of endothelial shear stress mechanotransduction [J]. Am J Physiol Heart Circ Physiol, 2024, 327(4): H989-H1003. doi:10.1152/ajpheart.00431.2024
doi: 10.1152/ajpheart.00431.2024
|
29 |
赵莉莉, 杨筱青, 张瑞丽. 妊娠期糖尿病患者肿瘤坏死因子-α和血管细胞黏附分子-1的表达与母婴结局的关系 [J]. 实用医学杂志, 2020, 36(13): 1793-1796.
|
30 |
VANHEYST K A, CHOI S H, KINGSLEY D T, et al. Ectopic Tumor VCAM-1 Expression in Cancer Metastasis and Therapy Resistance [J]. Cells, 2022, 11(23):3922. doi:10.3390/cells11233922
doi: 10.3390/cells11233922
|
31 |
吴田方, 戴东, 王常元. circ-0008583结合EIF4A3蛋白促进肝癌细胞增殖并抑制其凋亡 [J]. 实用医学杂志, 2022, 38(9): 1088-1093 . doi:10.3969/j.issn.1006-5725.2022.09.009
doi: 10.3969/j.issn.1006-5725.2022.09.009
|
32 |
吴文松, 刘超, 孙程圆. circRNA在胶质瘤中的研究进展 [J]. 实用医学杂志, 2021, 37(18): 2317-2321 .
|
33 |
XIE B, LIN J, CHEN X, et al. CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer [J]. Mol Cancer, 2023, 22(1): 151. doi:10.1186/s12943-023-01856-1
doi: 10.1186/s12943-023-01856-1
|
34 |
SHI X, PANG S, ZHOU J, et al. Bladder-cancer-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating fatty acid transporter protein 2 and down-regulating receptor-interacting protein kinase 3 in PMN-MDSCs [J]. Mol Cancer, 2024, 23(1): 52. doi:10.1186/s12943-024-01968-2
doi: 10.1186/s12943-024-01968-2
|