实用医学杂志 ›› 2025, Vol. 41 ›› Issue (5): 628-633.doi: 10.3969/j.issn.1006-5725.2025.05.002
• 专题笔谈 • 上一篇
收稿日期:
2024-07-18
出版日期:
2025-03-10
发布日期:
2025-03-20
通讯作者:
胡晓霞
E-mail:hu_xiaoxia@126.com
作者简介:
基金资助:
Haiyang LU,Weili ZHAO,Xiaoxia. HU()
Received:
2024-07-18
Online:
2025-03-10
Published:
2025-03-20
Contact:
Xiaoxia. HU
E-mail:hu_xiaoxia@126.com
摘要:
肠道菌群作为人体共生的微生物群体,其组成和功能影响人体代谢、免疫、内分泌等多方面生理功能。肠道菌群在异基因造血干细胞移植患者造血和免疫系统的精细调控上也发挥重要作用。在造血功能上,肠道菌群可以通过NOD1-STATs信号、TLRs-MyD88信号等通路调控造血干细胞向多谱系血细胞的分化,并在应激压力下推动造血干细胞向粒-单核系快速分化和成熟。因此,移植早期的原发性植入功能不良可能与肠道菌群功能紊乱有关。在免疫重建上,肠道菌群促进小肠上皮表达抗原递呈分子,是肠道aGVHD的重要始动因素。其次,肠道菌群可通过短链脂肪酸、胆汁酸、吲哚衍生物调节肠道免疫功能,其功能失调可导致肠道黏液屏障和免疫屏障功能紊乱,进一步促进肠道aGVHD发生和发展。因此,靶向肠道菌群成为一种有效的治疗策略,逐渐开始应用于临床。其中,粪便菌群移植联合传统抗排异治疗,可显著改善SR-aGVHD的临床严重程度和预后,其安全性高,不良反应可控,是SR-aGVHD治疗的新突破口。
中图分类号:
陆海洋,赵维莅,胡晓霞. 肠道菌群参与异基因造血干细胞移植免疫重建调控的研究进展[J]. 实用医学杂志, 2025, 41(5): 628-633.
Haiyang LU,Weili ZHAO,Xiaoxia. HU. Gut microbiota modulates immune reconstitution in allogeneic hematopoietic stem cell transplantation[J]. The Journal of Practical Medicine, 2025, 41(5): 628-633.
1 | 章新郑. 2005—2020年中国国家及分省疾病监测点的肿瘤死亡疾病负担数据解读 [J]. 诊断学理论与实践, 2024, 23(4): 371-377. |
2 |
SHONO Y, VAN DEN BRINK M R M. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation [J]. Nat Rev Cancer, 2018, 18(5): 283-295. doi:10.1038/nrc.2018.10
doi: 10.1038/nrc.2018.10 |
3 |
JOSEFSDOTTIR K S, BALDRIDGE M T, KADMON C S, et al. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota [J]. Blood, 2017, 129(6): 729-739. doi:10.1182/blood-2016-03-708594
doi: 10.1182/blood-2016-03-708594 |
4 |
YAN H, WALKER F C, ALI A, et al. The bacterial microbiota regulates normal hematopoiesis via metabolite-induced type 1 interferon signaling [J]. Blood Advances, 2022, 6(6): 1754-1765. doi:10.1182/bloodadvances.2021006816
doi: 10.1182/bloodadvances.2021006816 |
5 |
IWAMURA C, BOULADOUX N, BELKAID Y, et al. Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis [J]. Blood, 2017, 129(2): 171-176. doi:10.1182/blood-2016-06-723742
doi: 10.1182/blood-2016-06-723742 |
6 |
KHOSRAVI A, YÁÑEZ A, PRICE J G, et al. Gut microbiota promote hematopoiesis to control bacterial infection [J]. Cell Host Microbe, 2014, 15(3): 374-381. doi:10.1016/j.chom.2014.02.006
doi: 10.1016/j.chom.2014.02.006 |
7 |
JACKSON W D, GIACOMASSI C, WARD S, et al. TLR7 activation at epithelial barriers promotes emergency myelopoiesis and lung antiviral immunity [J]. Elife, 2023, 12:e85647. doi:10.7554/elife.85647
doi: 10.7554/elife.85647 |
8 |
中华医学会血液学分会干细胞应用学组. 异基因造血干细胞移植急性移植物抗宿主病诊断与治疗中国专家共识(2024年版) [J]. 中华血液学杂志, 2024, 45(6): 525-533. doi:10.3760/cma.j.cn121090-20240608-00214
doi: 10.3760/cma.j.cn121090-20240608-00214 |
9 |
KOYAMA M, MUKHOPADHYAY P, SCHUSTER I S, et al. MHC Class II Antigen Presentation by the Intestinal Epithelium Initiates Graft-versus-Host Disease and Is Influenced by the Microbiota [J]. Immunity, 2019, 51(5): 885-98.e7. doi:10.1016/j.immuni.2019.08.011
doi: 10.1016/j.immuni.2019.08.011 |
10 |
KOYAMA M, HIPPE D S, SRINIVASAN S, et al. Intestinal microbiota controls graft-versus-host disease independent of donor-host genetic disparity [J]. Immunity, 2023, 56(8): 1876-93.e8. doi:10.1016/j.immuni.2023.06.024
doi: 10.1016/j.immuni.2023.06.024 |
11 |
赖静, 傅鑫, 李成龙,等. 异基因造血干细胞移植后患者口腔及肠道菌群与早期胃肠道急性移植物抗宿主病的关系 [J]. 陆军军医大学学报, 2024, 46(4): 331-339. doi:10.16016/j.2097-0927.202310041
doi: 10.16016/j.2097-0927.202310041 |
12 |
KAWAGUCHI K, UMEDA K, HIEJIMA E, et al. Influence of post-transplant mucosal-associated invariant T cell recovery on the development of acute graft-versus-host disease in allogeneic bone marrow transplantation [J]. Int J Hematol, 2018, 108(1): 66-75. doi:10.1007/s12185-018-2442-2
doi: 10.1007/s12185-018-2442-2 |
13 |
MINCULESCU L, MARQUART H V, RYDER L P, et al. Improved Overall Survival, Relapse-Free-Survival, and Less Graft-vs.-Host-Disease in Patients With High Immune Reconstitution of TCR Gamma Delta Cells 2 Months After Allogeneic Stem Cell Transplantation [J]. Front Immunol, 2019, 10: 1997. doi:10.3389/fimmu.2019.01997
doi: 10.3389/fimmu.2019.01997 |
14 |
STECK N, HOFFMANN M, SAVA I G, et al. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation [J]. Gastroenterology, 2011, 141(3): 959-971. doi:10.1053/j.gastro.2011.05.035
doi: 10.1053/j.gastro.2011.05.035 |
15 |
HAYASE E, HAYASE T, JAMAL M A, et al. Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease [J]. Cell, 2022, 185(20): 3705-3719.e14. doi:10.1016/j.cell.2022.09.007
doi: 10.1016/j.cell.2022.09.007 |
16 |
SHONO Y, DOCAMPO M D, PELED J U, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice [J]. Sci Transl Med, 2016, 8(339): 339ra71. doi:10.1126/scitranslmed.aaf2311
doi: 10.1126/scitranslmed.aaf2311 |
17 | 高艳林, 王风霞, 张雅文, 等. 异基因造血干细胞移植后发生胃肠道急性移植物抗宿主病的危险因素分析 [J]. 医学研究杂志, 2024, 53(5): 138-143. |
18 |
HEIMESAAT M M, NOGAI A, BERESWILL S, et al. MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease [J]. Gut, 2010, 59(8): 1079-1087. doi:10.1136/gut.2009.197434
doi: 10.1136/gut.2009.197434 |
19 |
ZHAO Y, LIU Q, YANG L, et al. TLR4 inactivation protects from graft-versus-host disease after allogeneic hematopoietic stem cell transplantation [J]. Cell Mol Immunol, 2013, 10(2): 165-175. doi:10.1038/cmi.2012.58
doi: 10.1038/cmi.2012.58 |
20 |
陈晓欢, 洪学志, 刘雷,等. 肠道菌群失调与类风湿性关节炎 [J]. 实用医学杂志, 2019, 35(16): 2664-2668. doi:10.3969/j.issn.1006-5725.2019.16.033
doi: 10.3969/j.issn.1006-5725.2019.16.033 |
21 | 徐晓蓉, 龚坚, 王婧,等. 肠道菌群与银屑病相关性的实验研究进展 [J]. 实用医学杂志, 2020, 36(9): 566-569. |
22 |
YAO K, XIE Y, WANG J, et al. Gut microbiota: A newly identified environmental factor in systemic lupus erythematosus [J]. Front Immunol, 2023, 14: 1202850. doi:10.3389/fimmu.2023.1202850
doi: 10.3389/fimmu.2023.1202850 |
23 |
杨艳青, 李灿委, 杨自忠,等. 肠道菌群代谢物——短链脂肪酸的研究进展 [J]. 实用医学杂志, 2022, 38(14): 1834-1837. doi:10.3969/j.issn.1006
doi: 10.3969/j.issn.1006 |
24 |
FUSCO W, LORENZO M B, CINTONI M, et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota [J]. Nutrients, 2023, 15(9): 2211. doi:10.3390/nu15092211
doi: 10.3390/nu15092211 |
25 |
LIANG L, LIU L, ZHOU W, et al. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway [J]. Clin Sci (Lond), 2022, 136(4): 291-307. doi:10.1042/cs20210778
doi: 10.1042/cs20210778 |
26 |
CHEN G, RAN X, LI B, et al. Sodium Butyrate Inhibits Inflammation and Maintains Epithelium Barrier Integrity in a TNBS-induced Inflammatory Bowel Disease Mice Model [J]. EBioMedicine, 2018, 30: 317-325. doi:10.1016/j.ebiom.2018.03.030
doi: 10.1016/j.ebiom.2018.03.030 |
27 |
LI G, LIN J, ZHANG C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease [J]. Gut Microbes, 2021, 13(1): 1968257. doi:10.1080/19490976.2021.1968257
doi: 10.1080/19490976.2021.1968257 |
28 |
FURUSAWA Y, OBATA Y, FUKUDA S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells [J]. Nature, 2013, 504(7480): 446-450. doi:10.1038/nature12721
doi: 10.1038/nature12721 |
29 | STEIN-THOERINGER C K, NICHOLS K B, LAZRAK A, et al. Lactose drives Enterococcus expansion to promote graft-versus-host disease [J]. Science, 2019, 366(6469): 1143-1149. |
30 |
FUCHS C D, TRAUNER M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology [J]. Nat Rev Gastroenterol Hepatol, 2022, 19(7): 432-450. doi:10.1038/s41575-021-00566-7
doi: 10.1038/s41575-021-00566-7 |
31 |
杨瑾, 韦瑶, 金钧. 胆汁酸与肠道菌群的相互作用及对脓毒症的影响 [J]. 内科理论与实践, 2024, 19(3): 207-211. doi:10.16138/j.1673-6087.2024.03.11
doi: 10.16138/j.1673-6087.2024.03.11 |
32 |
PAIK D, YAO L, ZHANG Y, et al. Human gut bacteria produce Τ(Η)17-modulating bile acid metabolites [J]. Nature, 2022, 603(7903): 907-912. doi:10.1038/s41586-022-04480-z
doi: 10.1038/s41586-022-04480-z |
33 |
SONG X, SUN X, OH S F, et al. Microbial bile acid metabolites modulate gut RORγ(+) regulatory T cell homeostasis [J]. Nature, 2020, 577(7790): 410-415. doi:10.1038/s41586-019-1865-0
doi: 10.1038/s41586-019-1865-0 |
34 |
LINDNER S, MILTIADOUS O, RAMOS R J F, et al. Altered microbial bile acid metabolism exacerbates T cell-driven inflammation during graft-versus-host disease [J]. Nat Microbiol, 2024, 9(3): 614-630. doi:10.1038/s41564-024-01617-w
doi: 10.1038/s41564-024-01617-w |
35 |
AGUS A, PLANCHAIS J, SOKOL H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease [J]. Cell Host Microbe, 2018, 23(6): 716-724. doi:10.1016/j.chom.2018.05.003
doi: 10.1016/j.chom.2018.05.003 |
36 |
XUE C, LI G, ZHENG Q, et al. Tryptophan metabolism in health and disease [J]. Cell Metab, 2023, 35(8): 1304-1326. doi:10.1016/j.cmet.2023.06.004
doi: 10.1016/j.cmet.2023.06.004 |
37 |
LI K, HAO Z, DU J, et al. Bacteroides thetaiotaomicron relieves colon inflammation by activating aryl hydrocarbon receptor and modulating CD4(+)T cell homeostasis [J]. Int Immunopharmacol, 2021, 90: 107183. doi:10.1016/j.intimp.2020.107183
doi: 10.1016/j.intimp.2020.107183 |
38 |
ZENG C, CHENG T T, MA X, et al. The absence of AhR in CD4(+) T cells in patients with acute graft-versus-host disease may be related to insufficient CTCF expression [J]. Clin Epigenetics, 2022, 14(1): 109. doi:10.1186/s13148-022-01330-7
doi: 10.1186/s13148-022-01330-7 |
39 |
HAN L, ZHAO K, LI Y, et al. A gut microbiota score predicting acute graft-versus-host disease following myeloablative allogeneic hematopoietic stem cell transplantation [J]. Am J Transplant, 2020, 20(4): 1014-1027. doi:10.1111/ajt.15654
doi: 10.1111/ajt.15654 |
40 |
MARKEY K A, SCHLUTER J, GOMES A L C, et al. The microbe-derived short-chain fatty acids butyrate and propionate are associated with protection from chronic GVHD [J]. Blood, 2020, 136(1): 130-136. doi:10.1182/blood.2019003369
doi: 10.1182/blood.2019003369 |
41 |
WANG Y, HUANG L, HUANG T, et al. The Gut Bacteria Dysbiosis Contributes to Chronic Graft-Versus-Host Disease Associated With a Treg/Th1 Ratio Imbalance [J]. Front Microbiol, 2022, 13: 813576. doi:10.3389/fmicb.2022.813576
doi: 10.3389/fmicb.2022.813576 |
42 |
MUKHERJEE A, LORDAN C, ROSS R P, et al. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health [J]. Gut Microbes, 2020, 12(1): 1802866. doi:10.1080/19490976.2020.1802866
doi: 10.1080/19490976.2020.1802866 |
43 |
VALLET N, SALMONA M, MALET-VILLEMAGNE J, et al. Circulating T cell profiles associate with enterotype signatures underlying hematological malignancy relapses [J]. Cell Host Microbe, 2023, 31(8): 1386-1403.e6. doi:10.1016/j.chom.2023.06.009
doi: 10.1016/j.chom.2023.06.009 |
44 |
VALLET N, LE GRAND S, BONDEELLE L, et al. Azithromycin promotes relapse by disrupting immune and metabolic networks after allogeneic stem cell transplantation [J]. Blood, 2022, 140(23): 2500-2513. doi:10.1182/blood.2022016926
doi: 10.1182/blood.2022016926 |
45 |
SOFI M H, WU Y, TICER T, et al. A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD [J]. JCI Insight, 2021, 6(3): e136841. doi:10.1172/jci.insight.136841
doi: 10.1172/jci.insight.136841 |
46 |
VOSSEN J M, GUIOT H F, LANKESTER A C, et al. Complete suppression of the gut microbiome prevents acute graft-versus-host disease following allogeneic bone marrow transplantation [J]. PLoS One, 2014, 9(9): e105706. doi:10.1371/journal.pone.0105706
doi: 10.1371/journal.pone.0105706 |
47 |
ROUTY B, LETENDRE C, ENOT D, et al. The influence of gut-decontamination prophylactic antibiotics on acute graft-versus-host disease and survival following allogeneic hematopoietic stem cell transplantation [J]. Oncoimmunology, 2017, 6(1): e1258506. doi:10.1080/2162402x.2016.1258506
doi: 10.1080/2162402x.2016.1258506 |
48 |
SEVERYN C J, SIRANOSIAN B A, KONG S T, et al. Microbiota dynamics in a randomized trial of gut decontamination during allogeneic hematopoietic cell transplantation [J]. JCI Insight, 2022, 7(7): e154344. doi:10.1172/jci.insight.154344
doi: 10.1172/jci.insight.154344 |
49 |
KHUAT L T, LE C T, PAI C S, et al. Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation [J]. Sci Transl Med, 2020, 12(571): eaay7713. doi:10.1126/scitranslmed.aay7713
doi: 10.1126/scitranslmed.aay7713 |
50 |
HOLMES Z C, TANG H, LIU C, et al. Prebiotic galactooligosaccharides interact with mouse gut microbiota to attenuate acute graft-versus-host disease [J]. Blood, 2022, 140(21): 2300-2304. doi:10.1182/blood.2021015178
doi: 10.1182/blood.2021015178 |
51 |
JENQ R R, UBEDA C, TAUR Y, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation [J]. J Exp Med, 2012, 209(5): 903-911. doi:10.1084/jem.20112408
doi: 10.1084/jem.20112408 |
52 | 唐晓文, 吴德沛. 我如何用粪菌移植治疗肠道急性移植物抗宿主病 [J]. 中华血液学杂志, 2022, 43(5): 365-369. |
53 |
KAKIHANA K, FUJIOKA Y, SUDA W, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut [J]. Blood, 2016, 128(16): 2083-2088. doi:10.1182/blood-2016-05-717652
doi: 10.1182/blood-2016-05-717652 |
54 |
LIU Y, ZHAO Y, QI J, et al. Fecal microbiota transplantation combined with ruxolitinib as a salvage treatment for intestinal steroid-refractory acute GVHD [J]. Exp Hematol Oncol, 2022, 11(1): 96. doi:10.1186/s40164-022-00350-6
doi: 10.1186/s40164-022-00350-6 |
55 |
BILIŃSKI J, JASIŃSKI M, BASAK G W. The Role of Fecal Microbiota Transplantation in the Treatment of Acute Graft-versus-Host Disease [J]. Biomedicines, 2022, 10(4): 837. doi:10.3390/biomedicines10040837
doi: 10.3390/biomedicines10040837 |
[1] | 黄平,兰康云,梁炎春,陈勍,金瑛,陈光元,牛刚. 深部浸润型子宫内膜异位症病灶微生物组学研究[J]. 实用医学杂志, 2024, 40(21): 3023-3030. |
[2] | 凌鑫,钱佳萍,史冬涛,杨军,费培利. 西甲硅油治疗肠易激综合征患者对胃肠激素、肠道菌群及NLRP3炎性小体介导的炎性过程的影响[J]. 实用医学杂志, 2024, 40(2): 237-241. |
[3] | 李楠,赵雪,阿娜丽,梁贺然,戈娜. 胆汁酸在酒精性肝病中的作用研究进展[J]. 实用医学杂志, 2024, 40(15): 2187-2193. |
[4] | 奚可欣,赵宇骐,谢晓婷,陆云涛,范宏英,何小艳. 肠道菌群对胶质瘤的调控作用研究进展[J]. 实用医学杂志, 2024, 40(14): 2027-2030. |
[5] | 王演,潘铁军,刘振宇,孙进波,周宇,李超圣,高磊. 肠道微生物网络在高草酸诱导大鼠肾损伤中的保护作用[J]. 实用医学杂志, 2024, 40(13): 1771-1777. |
[6] | 黄彦玮,曾开泰,温子琪,李彦,陈容平. 帕金森病的肠道菌群标志物研究进展[J]. 实用医学杂志, 2024, 40(11): 1473-1478. |
[7] | 毕馨文,崔远捷,陆秋娴,崔佳,卜凡,何方,杨华,李鸣. 肠道菌群对高脂饮食诱导肥胖小鼠糖脂代谢紊乱的免疫调节作用[J]. 实用医学杂志, 2024, 40(11): 1505-1512. |
[8] | 彭英楠 边志磊 曹伟杰 李丽 张素平 万鼎铭 . 泊沙康唑与伏立康唑预防异基因造血干细胞移植后侵袭性真菌感染的疗效和安全性 [J]. 实用医学杂志, 2023, 39(6): 742-746. |
[9] | 张玉培,谢新生,石雅洁,曹伟杰,郭荣,万鼎铭. 异基因造血干细胞移植治疗ASXL1基因突变的骨髓增生异常综合征患者的效果[J]. 实用医学杂志, 2023, 39(23): 3087-3092. |
[10] | 李明,苏维,马士恒. 基于肠道免疫理论分析双歧杆菌辅助治疗肺部感染所致脓毒症的应用价值[J]. 实用医学杂志, 2023, 39(18): 2384-2388. |
[11] | 潘华,张敏尚,王旭,蒋丹丹. 气畅血行汤保留灌肠配合热敏灸在胃癌根治术后的应用效果[J]. 实用医学杂志, 2023, 39(16): 2130-2135. |
[12] | 杨燕 韩瑞敏 刘梦茹 颜晶晶 孙力 王德峰 . 肠道菌群移植治疗糖尿病的研究进展 [J]. 实用医学杂志, 2023, 39(12): 1584-1587. |
[13] | 雷榆 胡亚欣 余蕾 程明亮 程卓 丛硕 蒲茜 郑林 . 肝内胆汁淤积对小鼠回盲部胆汁酸谱及肠道菌群的影响 [J]. 实用医学杂志, 2023, 39(10): 1232-1236. |
[14] | 张杰 李小悦 黄家华 韩静. 脓毒症相关肝损伤与肠-肝轴研究进展 [J]. 实用医学杂志, 2022, 38(7): 795-798. |
[15] | 张晨晨 余美玲 谭卫国 巫株华 魏文静. 常规抗结核化疗对肠道菌群的影响 [J]. 实用医学杂志, 2022, 38(6): 678-684. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||