1 |
ROSSI J L S, BARBALHO S M, ARAUJO R R, et al. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors[J]. Diabetes Metab Res Re, 2022, 38(3): e3502. doi:10.1002/dmrr.3502
doi: 10.1002/dmrr.3502
|
2 |
TIRANDI A, CARBONE F, MONTECUCCO F, et al. The role of metabolic syndrome in sudden cardiac death risk: Recent evidence and future directions[J]. Eur J Clin Invest, 2022, 52(2): e13693. doi:10.1111/eci.13693
doi: 10.1111/eci.13693
|
3 |
FAHED G, AOUN L, ZERDAN M B, et al. Metabolic syndrome: Updates on pathophysiology and management in 2021[J]. Int J Mol Sci, 2022, 23(2): 786. doi:10.3390/ijms23020786
doi: 10.3390/ijms23020786
|
4 |
张承启, 李易姿, 吴琪俊, 等. 膳食多样化与代谢综合征关系的研究进展[J]. 实用医学杂志, 2022, 38(15): 1970-1974. doi:10.3969/j.issn.1006-5725.2022.15.022
doi: 10.3969/j.issn.1006-5725.2022.15.022
|
5 |
YAO F, BO Y, ZHAO L, et al. Prevalence and influencing factors of metabolic syndrome among adults in China from 2015 to 2017[J]. Nutrients, 2021, 13(12): 4475.
|
6 |
RODRIGUEZ J C, PETERMAN J E, FLEENOR B S, et al. Cardiopulmonary exercise responses in individuals with metabolic syndrome: The ball state adult fitness longitudinal lifestyle study[J]. Metab Syndr Relat Disord, 2022, 20(7): 414-420. doi:10.1089/met.2021.0130
doi: 10.1089/met.2021.0130
|
7 |
KIM B, KU M, KIYOJI T, et al. Cardiorespiratory fitness is strongly linked to metabolic syndrome among physical fitness components: A retrospective cross-sectional study[J]. J Physiol Anthropol, 2020, 39(1): 30.
|
8 |
SCHARHAG-ROSENBERGER F, WALITZEK S, KINDERMANN W, et al. Differences in adaptations to 1 year of aerobic endurance training: Individual patterns of nonresponse[J]. Scand J Med Sci Sports, 2012, 22(1): 113-118. doi:10.1111/j.1600-0838.2010.01139.x
doi: 10.1111/j.1600-0838.2010.01139.x
|
9 |
MATURANA F M, SOARES R N, MURIAS J M, et al. Responders and non-responders to aerobic exercise training: Beyond the evaluation of VO2 max [J]. Physiol Rep, 2021, 9(16): e14951. doi:10.14814/phy2.14951
doi: 10.14814/phy2.14951
|
10 |
BONAFIGLIA J T, PREOBRAZENSKI N, ISLAM H, et al. Exploring differences in cardiorespiratory fitness response rates across varying doses of exercise training: A retrospective analysis of eight randomized controlled trials[J]. Sports Med, 2021, 51(8): 1785-1797. doi:10.1007/s40279-021-01442-9
doi: 10.1007/s40279-021-01442-9
|
11 |
WEATHERWAX R M, HARRIS N K, KILDING A E, et al. The incidence of training responsiveness to cardiorespiratory fitness and cardiometabolic measurements following individualized and standardized exercise prescription: Study protocol for a randomized controlled trial[J]. Trials, 2016, 17(1): 601. doi:10.1186/s13063-016-1735-0
doi: 10.1186/s13063-016-1735-0
|
12 |
WEATHERWAX R M, HARRIS N K, KILDING A E, et al. Incidence of VO2max responders to personalized versus standardized exercise prescription[J]. Med Sci Sports Exerc, 2019, 51(4): 681-691.
|
13 |
BYRD B R, KEITH J, KEELING S M, et al. Personalized moderate-intensity exercise training combined with high-intensity interval training enhances training responsiveness[J]. Int J Environ Res Public Health, 2019, 16(12): 2088. doi:10.3390/ijerph16122088
doi: 10.3390/ijerph16122088
|
14 |
KIRTON M J, BURNLEY M T, RAMOS J S, et al. The effects of standardised versus individualised aerobic exercise prescription on fitness-fatness index in sedentary adults: A randomised controlled trial[J]. J Sports Sci Med, 2022, 21(3): 347-355.
|
15 |
WEATHERWAX R M, NELSON M C, DALLECK L C. The impact of personalized versus standardized cardiorespiratory and muscular training on health-related outcomes and rate of responders[J]. J Sports Sci Med, 2024, 23(1): 209-218.
|
16 |
CHAN S M H, SELEMIDIS S, BOZINOVSKI S, et al. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): Clinical significance and therapeutic strategies[J]. Pharmacol Ther, 2019, 198: 160-188.
|
17 |
BHATTI J S, BHATTI G K, REDDY P H. Mitochondrial dysfunction and oxidative stress in metabolic disorders-A step towards mitochondria based therapeutic strategies[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(5): 1066-1077. doi:10.1016/j.bbadis.2016.11.010
doi: 10.1016/j.bbadis.2016.11.010
|
18 |
中华医学会糖尿病分会. 中国2型糖尿病防治指南(2020年版)(下)[J]. 中国实用内科杂志, 2021, 41(9): 757-784.
|
19 |
BAYLES M P. ACSM's exercise testing and prescription[M]. Philadelphia: Lippincott Williams & Wilkins, 2023.
|
20 |
GLAAB T, TAUBE C. Practical guide to cardiopulmonary exercise testing in adults[J]. Respir Res, 2022, 23(1): 9. doi:10.1186/s12931-021-01895-6
doi: 10.1186/s12931-021-01895-6
|
21 |
HANSEN D, ABREU A, AMBROSETTI M, et al. Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: Why and how: A position statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology[J]. Eur J Prev Cardiol, 2022, 29(1): 230-245. doi:10.1093/eurjpc/zwab007
doi: 10.1093/eurjpc/zwab007
|
22 |
PÜHRINGER M, RING-DIMITRIOU S. The influence of cardiorespiratory fitness level on the relationship between work rates at the aerobic threshold (AerT) and the point of maximal fat oxidation (Fatmax) in untrained adults[J]. Front Sports Act Living, 2024, 6: 1321896.
|
23 |
WANG D, ZHANG P, LI J. Crossover point and maximal fat oxidation training effects on blood lipid metabolism in young overweight women: A pilot study[J]. Front Physiol, 2023, 14: 1190109. doi:10.3389/fphys.2023.1190109
doi: 10.3389/fphys.2023.1190109
|
24 |
邓淑坤, 袁鹏, 周群燕, 等. 基于心肺运动试验的精准有氧运动处方对中心型肥胖患者体成分及代谢指标的影响[J]. 中国康复医学杂志, 2023, 38(2): 199-206. doi:10.3969/j.issn.1001-1242.2023.02.010
doi: 10.3969/j.issn.1001-1242.2023.02.010
|
25 |
王晓东, 谢友红, 孙兴国, 等. 个体化强度运动康复治疗代谢综合征的疗效分析[J]. 中国运动医学杂志, 2021, 40(3): 181-185. doi:10.3969/j.issn.1000-6710.2021.03.003
doi: 10.3969/j.issn.1000-6710.2021.03.003
|
26 |
ALGHANNAM A F, GHAITH M M, ALHUSSAIN M H. Regulation of energy substrate metabolism in endurance exercise[J]. Int J Environ Res Public Health, 2021, 18(9): 4963. doi:10.3390/ijerph18094963
doi: 10.3390/ijerph18094963
|
27 |
叶健华, 赵玉钏. 2型糖尿病缓解标准与治疗策略[J]. 实用医学杂志, 2023, 39(14): 1729-1732. doi:10.3969/j.issn.1006-5725.2023.14.001
doi: 10.3969/j.issn.1006-5725.2023.14.001
|
28 |
王晓东, 谢友红, 孙兴国, 等. 心肺运动试验精准制定个体化强度运动处方对代谢综合征患者心肺功能的影响[J]. 中国运动医学杂志, 2019, 38(1): 3-9. doi:10.3969/j.issn.1000-6710.2019.01.001
doi: 10.3969/j.issn.1000-6710.2019.01.001
|
29 |
李莉, 鲍燕. 基于心肺运动试验的个体化运动方案对代谢综合征患者心肺功能指标影响分析[J]. 实验与检验医学, 2022, 40(2): 214-218. doi:10.3969/j.issn.1674-1129.2022.02.021
doi: 10.3969/j.issn.1674-1129.2022.02.021
|
30 |
WEATHERWAX R M, RAMOS J S, HARRIS N K, et al. Changes in metabolic syndrome severity following individualized versus standardized exercise prescription: A feasibility study[J]. Int J Environ Res Public Health, 2018, 15(11): 2594.
|
31 |
HACKETT D A. Lung function and respiratory muscle adaptations of endurance-and strength-trained males[J]. Sports, 2020, 8(12): 160.
|
32 |
SILVA L R B, ZAMUNÉR A R, GENTIL P, et al. Cardiac autonomic modulation and the kinetics of heart rate responses in the on-and off-transient during exercise in women with metabolic syndrome[J]. Front Physiol, 2017, 8: 542.
|
33 |
NAVARRO-LOMAS G, DOTE-MONTERO M, ALCANTARA J M A, et al. Different exercise training modalities similarly improve heart rate variability in sedentary middle-aged adults: The FIT-AGEING randomized controlled trial[J]. Eur J Appl Physiol, 2022, 122(8): 1863-1874.
|
34 |
GRÄSSLER B, THIELMANN B, BÖCKELMANN I, et al. Effects of different exercise interventions on heart rate variability and cardiovascular health factors in older adults: A systematic review[J]. Eur Rev Aging Phys Act, 2021, 18(1): 24.
|