1 |
PATEL D C, TEWARI B P, CHAUNSALI L, et al. Neuron-glia interactions in the pathophysiology of epilepsy[J]. Nat Rev Neurosci, 2019, 20(5): 282-297. doi:10.1038/s41583-019-0126-4
doi: 10.1038/s41583-019-0126-4
|
2 |
BABAR R K, BRESNAHAN R, GILLESPIE C S, et al. Lacosamide add-on therapy for focal epilepsy[J]. Cochrane Database Syst Rev, 2021, 5(5): CD008841. doi:10.1002/14651858.cd008841.pub3
doi: 10.1002/14651858.cd008841.pub3
|
3 |
李欣潞, 许虹, 梁稀. 左乙拉西坦联合奥卡西平治疗成人颞叶癫痫患者认知功能障碍的疗效[J]. 实用医学杂志, 2021, 37(1): 87-90. doi:10.3969/j.issn.1006-5725.2021.01.018
doi: 10.3969/j.issn.1006-5725.2021.01.018
|
4 |
ROGER E, PICHAT C, TORLAY L, et al. Hubs disruption in mesial temporal lobe epilepsy. A resting‐state fMRI study on a language‐and‐memory network[J]. Hum Brain Mapp, 2020, 41(3): 779-796. doi:10.1002/hbm.24839
doi: 10.1002/hbm.24839
|
5 |
BINDING L P, DASGUPTA D, GIAMPICCOLO D, et al. Structure and function of language networks in temporal lobe epilepsy[J]. Epilepsia, 2022, 63(5): 1025-1040. doi:10.1111/epi.17204
doi: 10.1111/epi.17204
|
6 |
SUN Y M, PENG Y X, WEN Q, et al. Resting-state fMRI in temporal lobe epilepsy patients with cognitive impairment: A protocol for systematic review and meta-analysis[J]. Medicine (Baltimore), 2021, 100(41): e27249. doi:10.1097/md.0000000000027249
doi: 10.1097/md.0000000000027249
|
7 |
孔雨,武力勇. MAPT基因突变额颞叶痴呆tau蛋白靶向正电子发射计算机断层显像技术研究进展 [J]. 实用医学杂志, 2020, 36 (15): 2157-2160. doi:10.3969/j.issn.1006-5725.2020.15.027
doi: 10.3969/j.issn.1006-5725.2020.15.027
|
8 |
LIU K, YU Z L, WU W, et al. fMRI-SI-STBF: An fMRI-informed Bayesian electromagnetic spatio-temporal extended source imaging[J]. Neurocomputing (Amst), 2021, 462: 14-30. doi:10.1016/j.neucom.2021.06.066
doi: 10.1016/j.neucom.2021.06.066
|
9 |
CHOI U S, SUNG Y W, OGAWA S. Effects of Physiological Signal Removal on Resting-State Functional MRI Metrics[J]. Brain Sci, 2022, 13(1): 8. doi:10.3390/brainsci13010008
doi: 10.3390/brainsci13010008
|
10 |
LYU D, LI T, LYU X. Resting-state functional reorganisation in Alzheimer′s disease and amnestic mild cognitive impairment: protocol for a systematic review and meta-analysis[J]. BMJ Open, 2021, 11(10): e049798. doi:10.1136/bmjopen-2021-049798
doi: 10.1136/bmjopen-2021-049798
|
11 |
CHAKRABORTY A R, ALMEIDA N C, PRATHER K Y, et al. Resting‐state functional magnetic resonance imaging with independent component analysis for presurgical seizure onset zone localization: A systematic review and meta‐analysis[J]. Epilepsia, 2020, 61(9): 1958-1968. doi:10.1111/epi.16637
doi: 10.1111/epi.16637
|
12 |
LI S, TENG Z, QIU Y, et al. Dissociation Pattern in Default-Mode Network Homogeneity in Drug-Naive Bipolar Disorder[J]. Front Psychiatry, 2021, 12: 699292. doi:10.3389/fpsyt.2021.699292
doi: 10.3389/fpsyt.2021.699292
|
13 |
GARCIA-RAMOS C, NAIR V, MAGANTI R, et al. Network phenotypes and their clinical significance in temporal lobe epilepsy using machine learning applications to morphological and functional graph theory metrics[J]. Sci Rep, 2022, 12(1): 14407. doi:10.1038/s41598-022-18495-z
doi: 10.1038/s41598-022-18495-z
|
14 |
GAO Y J, WANG X, XIONG P G, et al. Abnormalities of the default-mode network homogeneity and executive dysfunction in people with first-episode, treatment-naive left temporal lobe epilepsy[J]. Eur Rev Med Pharmacol Sci,2021,25(4): 2039-2049.
|
15 |
YANG F, JIA W, KUKUN H, et al. A Study of Spontaneous Brain Activity on Resting-State Functional Magnetic Resonance Imaging in Adults with MRI-Negative Temporal Lobe Epilepsy[J]. Neuropsychiatr Dis Treat,2022,18: 1107-1116. doi:10.2147/ndt.s366189
doi: 10.2147/ndt.s366189
|
16 |
ZHOU X, ZHANG Z, LIU J, et al. Disruption and lateralization of cerebellar-cerebral functional networks in right temporal lobe epilepsy: A resting-state fMRI study[J]. Epilepsy Behav,2019,96: 80-86. doi:10.1016/j.yebeh.2019.03.020
doi: 10.1016/j.yebeh.2019.03.020
|
17 |
GONZÁLEZ H F J, NARASIMHAN S, JOHNSON G W, et al. Role of the NucleusBasalis as a Key Network Node in Temporal Lobe Epilepsy[J]. Neurology,2021,96(9): e1334-e1346. doi:10.1212/wnl.0000000000011523
doi: 10.1212/wnl.0000000000011523
|
18 |
ZHAO B, YANG B, TAN Z, et al. Intrinsic brain activity changes in temporal lobe epilepsy patients revealed by regional homogeneity analysis[J]. Seizure, 2020, 81: 117-122. doi:10.1016/j.seizure.2020.07.030
doi: 10.1016/j.seizure.2020.07.030
|
19 |
SONG C, XIE S, ZHANG X, et al. Similarities and differences of dynamic and static spontaneous brain activity between left and right temporal lobe epilepsy[J]. Brain Imaging Behav, 2024,18(2):352-367.. doi:10.1007/s11682-023-00835-w
doi: 10.1007/s11682-023-00835-w
|
20 |
ZHOU X, LIU J, ZHANG Z, et al. Aberrant cerebral intrinsic activity and cerebro-cerebellar functional connectivity in right temporal lobe epilepsy: A resting-state functional MRI study[J]. Neuro Report, 2021, 32(12): 1009-1016. doi:10.1097/WNR.0000000000001681
doi: 10.1097/WNR.0000000000001681
|
21 |
STRENG M L, KROOK-MAGNUSON E. The cerebellum and epilepsy[J]. Epilepsy Behav, 2021,121(Pt B): 106909. doi:10.1016/j.yebeh.2020.106909
doi: 10.1016/j.yebeh.2020.106909
|
22 |
MENON V. 20 years of the default mode network: A review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. doi:10.1016/j.neuron.2023.04.023
doi: 10.1016/j.neuron.2023.04.023
|
23 |
ZHOU S, XIONG P, REN H, et al. Aberrant dorsal attention network homogeneity in patients with right temporal lobe epilepsy[J]. Epilepsy Behav, 2020, 111: 107278. doi:10.1016/j.yebeh.2020.107278
doi: 10.1016/j.yebeh.2020.107278
|
24 |
ZHANG Z, ZHOU X, LIU J, et al. Longitudinal assessment of resting-state fMRI intemporal lobe epilepsy: A two-year follow-up study[J]. Epilepsy Behav, 2020, 103(Pt A): 106858. doi:10.1016/j.yebeh.2019.106858
doi: 10.1016/j.yebeh.2019.106858
|
25 |
DUMLU S N, ADEMOĞLU A, SUN W. Investigation of functional variability and connectivity in temporal lobe epilepsy: A resting state fMRI study[J]. Neurosci Lett, 2020, 733: 135076. doi:10.1016/j.neulet.2020.135076
doi: 10.1016/j.neulet.2020.135076
|
26 |
ZHOU X, ZHANG Z, YU L, et al. Disturbance of functional and effective connectivity of the salience network involved in attention deficits in right temporal lobe epilepsy[J]. Epilepsy Behav, 2021, 124: 108308. doi:10.1016/j.yebeh.2021.108308
doi: 10.1016/j.yebeh.2021.108308
|
27 |
JALBRZIKOWSKI M, FREEDMAN D, HEGARTY C E, et al. Structural Brain Alterations in Youth With Psychosis and Bipolar Spectrum Symptoms[J]. J Am Acad Child Adolesc Psychiatry, 2019, 58(11): 1079-1091. doi:10.1016/j.jaac.2018.11.012
doi: 10.1016/j.jaac.2018.11.012
|
28 |
LI D, LIU R, MENG L, et al. Abnormal Ventral Somatomotor Network Homogeneity in Patients With Temporal Lobe Epilepsy[J]. Front Psychiatry, 2022, 13: 877956. doi:10.3389/fpsyt.2022.877956
doi: 10.3389/fpsyt.2022.877956
|
29 |
QIN L, JIANG W, ZHENG J, et al. Alterations Functional Connectivity in Temporal Lobe Epilepsy and Their Relationships With Cognitive Function: A Longitudinal Resting-State fMRI Study[J]. Front Neurol, 2020,11: 625. doi:10.3389/fneur.2020.00625
doi: 10.3389/fneur.2020.00625
|
30 |
GONZÁLEZ H F J, CHAKRAVORTI S, GOODALE S E, et al. Thalamic arousal network disturbances in temporal lobe epilepsy and improvement after surgery[J]. J Neurol Neurosurg Psychiatry, 2019, 90(10): 1109-1116. doi:10.1136/jnnp-2019-320748
doi: 10.1136/jnnp-2019-320748
|
31 |
ASADI-POOYA A A, TAJBAKHSH A, SAVARDASHTAKI A. MicroRNAs in temporal lobe epilepsy: a systematic review[J]. Neurol Sci, 2021, 42(2): 571-578. doi:10.1007/s10072-020-05016-x
doi: 10.1007/s10072-020-05016-x
|
32 |
DESALVO M N, TANAKA N, DOUW L, et al. Contralateral Preoperative Resting-State Functional MRI Network Integration Is Associated with Surgical Outcome in Temporal Lobe Epilepsy[J]. Radiology, 2020, 294(3): 622-627. doi:10.1148/radiol.2020191008
doi: 10.1148/radiol.2020191008
|
33 |
GROSS W L, HELFAND A I, SWANSON S J, et al. Prediction of Naming Outcome With fMRI Language Lateralization in Left Temporal Epilepsy Surgery[J]. Neurology, 2022, 98(23): e2337-e2346. doi:10.1212/wnl.0000000000200552
doi: 10.1212/wnl.0000000000200552
|
34 |
LI W, JIANG Y, QIN Y, et al. Altered Resting State Networks Before and After Temporal Lobe Epilepsy Surgery[J]. Brain Topogr, 2022, 35(5-6): 692-701. doi:10.1007/s10548-022-00912-1
doi: 10.1007/s10548-022-00912-1
|
35 |
LI W, JIANG Y, QIN Y, et al. Dynamic gray matter and intrinsic activity changes after epilepsy surgery[J]. Acta Neurol Scand, 2021, 143(3): 261-270. doi:10.1111/ane.13361
doi: 10.1111/ane.13361
|
36 |
MASSOT-TARRÚS A, WHITE K, MIRSATTARI S M. Comparing the Wada Test and Functional MRI for the Presurgical Evaluation of Memory in Temporal Lobe Epilepsy[J]. Curr Neurol Neurosci Rep, 2019, 19(6): 31. doi:10.1007/s11910-019-0945-8
doi: 10.1007/s11910-019-0945-8
|
37 |
HUANG C, ZHOU Y, ZHONG Y, et al. The Bilateral Precuneus as a Potential Neuroimaging Biomarker for Right Temporal Lobe Epilepsy: A Support Vector Machine Analysis[J]. Front Psychiatry, 2022, 13: 923583. doi:10.3389/fpsyt.2022.923583
doi: 10.3389/fpsyt.2022.923583
|
38 |
LARIVIÈRE S, WENG Y, DE WAEL R VOS, et al. Functional connectome contractions in temporal lobe epilepsy: Microstructural underpinnings and predictors of surgical outcome[J]. Epilepsia, 2020, 61(6): 1221-1233. doi:10.1111/epi.16540
doi: 10.1111/epi.16540
|
39 |
MAZROOYISEBDANI M, NAIR V A, GARCIA-RAMOS C, et al. Graph Theory Analysis of Functional Connectivity Combined with Machine Learning Approaches Demonstrates Widespread Network Differences and Predicts Clinical Variables in Temporal Lobe Epilepsy[J]. Brain Connect, 2020, 10(1): 39-50. doi:10.1089/brain.2019.0702
doi: 10.1089/brain.2019.0702
|