1 |
FANG Y, JIANG L, JIN S, et al. AuNPs beacons-enhanced surface plasmon resonance imaging sensor for rapid, high-throughput and ultra-sensitive detection of three fusion genes related to acute promyelocytic leukemia[J]. Sensor Actuat B-Chem, 2022, 361: 1-9.
|
2 |
HERNANDEZ-VALLADARES M. Multi-Omic approaches to classify, predict, and treat acute leukemias[J]. Cancers, 2023, 15(4): 1049.
|
3 |
曾雪娇,谢仁古丽·阿力木,庞楠楠, 等. 急性白血病预后相关基因突变的研究[J]. 医学信息, 2021, 34(20): 41-44.
|
4 |
LILLJEBJORN H, ORSMAR-PIETRAS C, MITELMAN F, et al. Transcriptomics paving the way for improved diagnostics and precision medicine of acute leukemia[J]. Semin Cancer Biol, 2022, 84: 40-49.
|
5 |
SPARAVIER A, DI CROCE L. Polycomb complexes in MLL-AF9-related leukemias[J]. Curr Opin Genet Dev, 2022, 75: 1-7.
|
6 |
GAO H, XU H, WANG C, et al. Optical genome mapping for comprehensive assessment of chromosomal aberrations and discovery of new fusion genes in pediatric b-acute lymphoblastic leukemia[J]. Cancers, 2022, 15(1): 35.
|
7 |
DESHPANDE D, CHHUGANI K, CHANG Y, et al. RNA-seq data science: From raw data to effective interpretation[J]. Front Genet, 2023, 14: 997383.
|
8 |
MICHUDA J, PARK B H, CUMMINGS A L, et al. Use of clinical RNA-sequencing in the detection of actionable fusions compared to DNA-sequencing alone[J]. J Clin Oncol, 2022, 40(16): 3077-3077.
|
9 |
HAYUN M, SZWARCWORT M, ROSENBERG D, et al. Spontaneous arising of a lymphoblastoid B-cell line harbouring a pre-leukemic DNMT3A mutation in acute myeloid leukaemia cell culture[J]. J Cell Mol Med, 2021, 25(22): 10778-10782.
|
10 |
ARBER D A, ORAZI A, HASSERJIAN R P, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data[J]. Blood, 2022,140(11): 1200-1228.
|
11 |
ARINDRARTO W, BORRAS D M, DE GROEN R A L, et al. Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing[J]. Leukemia, 2021, 35(1): 47-61.
|
12 |
江梅, 周裕儒, 詹媛, 等. 转录组测序分析融合基因在染色体核型正常髓系白血病诊断中的应用[J]. 中华医学杂志, 2021, 101(13): 939-944.
|
13 |
FERNANDERS M R, SOUZA VINAGRE L W M, RODRIGUES J C G, et al. Correlation of genetic variants and the incidence, prevalence and mortality rates of acute lymphoblastic aeukemia[J]. J Pers Med, 2022,12(3): 370.
|
14 |
CHEN Z A. The e1a3 BCR-ABL1 fusion transcript in Philadelphia chromosome-positive acute lymphoblastic leukaemia: a case report[J]. Hematology, 2023, 28: 2186040.
|
15 |
许国发, 陈苏宁, 刘立民, 等. 费城染色体样急性淋巴细胞白血病的研究进展[J]. 临床血液学杂志, 2021, 34(7): 517-522.
|
16 |
YASUDA T, TSUZUKI S, KAWAZU M, et al. Two novel high-risk adult B-cell acute lymphoblastic leukemia subtypes with high expression of CDX2 and IDH1/2 mutations[J]. Blood, 2022, 139(12): 1850-1862.
|
17 |
SHARMA G, BOBY E, NIDHI T, et al. Diagnostic utility of IGF2BP1 and its targets as potential biomarkers in ETV6-RUNX1 positive B-Cell acute lymphoblastic leukemia[J]. Front Oncol, 2021,11: 588101.
|
18 |
ELGARTEN C W, APLENC R. Pediatric acute myeloid leukemia: updates on biology, risk stratification, and therapy[J]. Curr Opin Pediatr, 2020, 32(1): 57-66.
|
19 |
霍娅, 于洁. 可测量残留病与儿童急性髓系白血病治疗反应与预后的关系研究进展[J]. 现代医药卫生, 2021, 37(20): 3500-3504.
|
20 |
BROWN L M, LONSDALE A, ZHU A, et al. The application of RNA sequencing for the diagnosis and genomic classification of pediatric acute lymphoblastic leukemia[J]. Blood Adv, 2020, 4(7): 1217.
|
21 |
EEPERANZA-CEBOLLADA E, GOMEZ-GONZALEZ S, et al. A miRNA signature related to stemness identifies high-risk patients in paediatric acute myeloid leukaemia[J]. Brit J Haematol, 2023, 202(1): 96-110.
|
22 |
LIM E L, TRINH D L, RIES R E, et al. MicroRNA Expression-Based Model Indicates Event-Free Survival in Pediatric Acute Myeloid Leukemia[J]. J Clin Oncol, 2019, 37(3): 261.
|
23 |
LI D, LIANG J, CHENG C, et al. Identification of m6A-Related lncRNAs Associated With Prognoses and Immune Responses in Acute Myeloid Leukemia[J]. Front Cell Dev Biol,2021, 9: 770451.
|
24 |
STUKAITE-RUIBIENE E, NORVILAS R, DIRSE V, et al. Case report: specific ABL-inhibitor imatinib is an effective targeted agent as the first line therapy to treat B-cell acute lymphoblastic leukemia with a cryptic NUP214-ABL1 gene fusion[J]. Pathol Oncol Res, 2022, 28: 1610570.
|
25 |
LI J, DAI Y, WU L, et al. Emerging molecular subtypes and therapeutic targets in B-cell precursor acute lymphoblastic leukemia[J]. Front Med, 2021, 15(3): 347-371.
|
26 |
KERBS P, VOSBERG S, KREBS S, et al. Fusion gene detection by RNA-sequencing complements diagnostics of acute myeloid leukemia and identifies recurring NRIP1-MIR99AHG rearrangements[J]. Haematologica, 2022, 107(1): 100-111.
|
27 |
VAN GALEN P, HOVESTADT V, WADSWORTH II M H, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity[J]. Cell, 2019, 176(6): 1265-1281. e24.
|
28 |
WITKOWSKI M T, DOLGALEV I, EVENSEN N A, et al. Extensive remodeling of the immune microenvironment in B cell acute lymphoblastic leukemia[J]. Cancer Cell, 2020, 37(6): 867-882. e12.
|
29 |
LIN C, XU J Q, ZHONG G C, et al. Integrating RNA-seq and scRNA-seq to explore the biological significance of NAD+ metabolism-related genes in the initial diagnosis and relapse of childhood B-cell acute lymphoblastic leukemia[J]. Front Immunol, 2022, 13 :1043111.
|
30 |
SCHNOEDR T M, SCHWARZER A, JAYAVELU A K, et al. PLCG1 is required for AML1-ETO leukemia stem cell self-renewal[J]. Blood, 2022, 139(7): 1080-1097.
|
31 |
KAZEMI-SEFAT G E, KERAMATIPOUR M, VAEZI M, et al. Integrated genomic sequencing in myeloid blast crisis chronic myeloid leukemia (MBC-CML), identified potentially important findings in the context of leukemogenesis model[J]. Sci Rep, 2022, 12(1): 12816.
|
32 |
CHEN B, JIANG L, ZHONG M L, et al. Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia[J]. Proc Natl Acad Sci U S A, 2020, 117(37): 23192.
|
33 |
LAI S H, LI Y C, ZHANG S, et al. Whole genome, exon mutation and transcriptomic profiling of acute myeloid leukemia: a case report[J]. Oncol Lett, 2021, 22(1): 559.
|
34 |
KIMURA S, MONTEFIORI L, IACOBUCCI I, et al. Enhancer retargeting of CDX2 and UBTF::ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia[J]. Blood, 2022, 139(24): 3519-3531.
|