1 |
HE Y, LI Y, YANG X, et al. The dietary transition and its association with cardiometabolic mortality among Chinese adults, 1982-2012: a cross-sectional population-based study [J]. Lancet Diabetes Endocrinol, 2019, 7(7): 540-548.
|
2 |
庞邵杰, 贾珊珊, 方微, 等. 中国18~59 岁居民膳食脂肪酸的摄入状况及食物来源分析 [J]. 营养学报, 2022, 44(4): 366-370.
|
3 |
HUANG J, LUCERO-PRISNO D, ZHANG L, et al. Updated epidemiology of gastrointestinal cancers in East Asia [J]. Nat Rev Gastroenterol Hepatol, 2023, 20(5): 271-287.
|
4 |
WU Y, LI Y, GIOVANNUCCI E. Potential Impact of Time Trend of Lifestyle Risk Factors on Burden of Major Gastrointestinal Cancers in China [J]. Gastroenterology, 2021, 161(6): 1830-1841.e8.
|
5 |
ARIMA K, ZHONG R, UGAI T, et al. Western-Style Diet, pks Island-Carrying Escherichia coli, and Colorectal Cancer: Analyses From Two Large Prospective Cohort Studies [J]. Gastroenterology, 2022, 163(4): 862-874.
|
6 |
ARITA S, INAGAKI-OHARA K. High-fat-diet-induced modulations of leptin signaling and gastric microbiota drive precancerous lesions in the stomach [J]. Nutrition, 2019, 67-68: 110556.
|
7 |
LIU T, GUO Z, SONG X, et al. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence [J]. J Cell Mol Med, 2020, 24(4): 2648-2662.
|
8 |
JIN D, HUANG K, XU M, et al. Deoxycholic acid induces gastric intestinal metaplasia by activating STAT3 signaling and disturbing gastric bile acids metabolism and microbiota [J]. Gut microbes, 2022, 14(1): 2120744.
|
9 |
FU T, COULTER S, YOSHIHARA E, et al. FXR Regulates Intestinal Cancer Stem Cell Proliferation [J]. Cell, 2019, 176(5): 1098-1112.e18.
|
10 |
GHOSH S, MOLCAN E, DECOFFE D, et al. Diets rich in n-6 PUFA induce intestinal microbial dysbiosis in aged mice [J]. Br J Nutr, 2013, 110(3): 515-523.
|
11 |
XU C, GU L, HU L, et al. FADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancer [J]. Nat Commun, 2023, 14(1): 2042.
|
12 |
WANG T, BROWN N, MCCOY A, et al. Omega-3 Polyunsaturated Fatty Acids, Gut Microbiota, Microbial Metabolites, and Risk of Colorectal Adenomas [J]. Cancers(Basel), 2022, 14(18): 4443.
|
13 |
ZHANG H, ZHENG L, LI C, et al. Effects of gut microbiota on omega-3-mediated ovary and metabolic benefits in polycystic ovary syndrome mice [J]. J Ovarian Res, 2023, 16(1): 138.
|
14 |
YOO W, ZIEBA J, FOEGEDING N, et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide [J]. Science, 2021, 373(6556): 813-818.
|
15 |
WU D, CAO M, PENG J, et al. The effect of trimethylamine N-oxide on Helicobacter pylori-induced changes of immunoinflammatory genes expression in gastric epithelial cells [J]. Int Immunopharmacol, 2017, 43: 172-178.
|
16 |
JALANDRA R, DALAL N, YADAV A, et al. Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer [J]. Appl Microbiol Biotechnol, 2021, 105(20): 7651-7660.
|
17 |
MIRJI G, WORTH A, BHAT S, et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer [J]. Sci Immunol, 2022, 7(75): eabn0704.
|
18 |
WANG L, GONG Z, ZHANG X, et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation [J]. Gut Microbes, 2020, 12(1): 1-20.
|
19 |
YU J, ZHENG J, QI J, et al. Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signalling pathway [J]. Int J Oncol, 2019, 54(3): 879-892.
|
20 |
SONG X, AN Y, CHEN D, et al. Microbial metabolite deoxycholic acid promotes vasculogenic mimicry formation in intestinal carcinogenesis [J]. Cancer Sci, 2022, 113(2): 459-477.
|
21 |
HUANG C, TAN H, SONG M, et al. Maternal Western diet mediates susceptibility of offspring to Crohn's-like colitis by deoxycholate generation [J]. Microbiome, 2023, 11(1): 96.
|
22 |
WANG B, KONG Q, LI X, et al. A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference [J]. Nutrients, 2020, 12(10): 3197.
|
23 |
LIANG Y, RAO Z, DU D, et al. Butyrate prevents the migration and invasion, and aerobic glycolysis in gastric cancer via inhibiting Wnt/β-catenin/c-Myc signaling [J]. Drug Dev Res, 2023, 84(3): 532-541.
|
24 |
KAŹMIERCZAK-SIEDLECKA K, MARANO L, MEROLA E, et al. Sodium butyrate in both prevention and supportive treatment of colorectal cancer [J]. Front Cell Infect Microbiol, 2022, 12: 1023806.
|
25 |
ASAHARA T, SHIMIZU K, NOMOTO K, et al. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7 [J]. Infect Immun, 2004, 72(4): 2240-2247.
|
26 |
WANG R, TAO B, FAN Q, et al. Fatty-acid receptor CD36 functions as a hydrogen sulfide-targeted receptor with its Cys333-Cys272 disulfide bond serving as a specific molecular switch to accelerate gastric cancer metastasis [J]. E Bio Med, 2019, 45: 108-123.
|
27 |
BLACHIER F, ANDRIAMIHAJA M, LARRAUFIE P, et al. Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa [J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(2): G125-G135.
|
28 |
陈善稳, 王鹏远, 刘玉村. 硫化氢与结直肠癌相关性及其抗肿瘤药物研发的进展 [J]. 中华胃肠外科杂志, 2017, 20(07): 834-837.
|
29 |
ZHANG W, AN Y, QIN X, et al. Gut Microbiota-Derived Metabolites in Colorectal Cancer: The Bad and the Challenges [J]. Front Oncol, 2021, 11: 739648.
|
30 |
NABHANI Z AL, DULAUROY S, LéCUYER E, et al. Excess calorie intake early in life increases susceptibility to colitis in adulthood [J]. Nat Metab, 2019, 1(11): 1101-1109.
|
31 |
CHEN J, XUE F, DU W, et al. An Endogenous HS-Activated Nanoplatform for Triple Synergistic Therapy of Colorectal Cancer [J]. Nano Lett, 2022, 22(15): 6156-6165.
|
32 |
HE C, CHENG D, PENG C, et al. High-Fat Diet Induces Dysbiosis of Gastric Microbiota Prior to Gut Microbiota in Association With Metabolic Disorders in Mice [J]. Front Microbiol, 2018, 9: 639.
|
33 |
SUKI M, LEIBOVICI WEISSMAN Y, BOLTIN D, et al. Helicobacter pylori infection is positively associated with an increased BMI, irrespective of socioeconomic status and other confounders: a cohort study [J]. Eur J Gastroenterol Hepatol, 2018, 30(2): 143-148.
|
34 |
MARQUES M, COSTA A, OSóRIO H, et al. Helicobacter pylori PqqE is a new virulence factor that cleaves junctional adhesion molecule A and disrupts gastric epithelial integrity [J]. Gut microbes, 2021, 13(1): 1-21.
|
35 |
TRAULSEN J, ZAGAMI C, DADDI A, et al. Molecular modelling of the gastric barrier response, from infection to carcinogenesis [J]. Best Pract Res Clin Gastroenterol, 2021, 50-51: 101737.
|
36 |
ZENG N, WU F, LU J, et al. High-fat diet impairs gut barrier through intestinal microbiota-derived reactive oxygen species [J]. Sci China Life Sci, 2023.
|
37 |
YANG J, WEI H, ZHOU Y, et al. High-Fat Diet Promotes Colorectal Tumorigenesis Through Modulating Gut Microbiota and Metabolites [J]. Gastroenterology, 2022, 162(1): 135-149.e2.
|
38 |
MISHRA S, WANG B, JAIN S, et al. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut [J]. Gut, 2023, 72(10): 1848-1865.
|
39 |
HU Y, PANG W, HUANG Y, et al. The Gastric Microbiome Is Perturbed in Advanced Gastric Adenocarcinoma Identified Through Shotgun Metagenomics [J]. Front Cell Infect Microbiol, 2018, 8: 433.
|
40 |
DE WAAL G, DE VILLIERS W, FORGAN T, et al. Colorectal cancer is associated with increased circulating lipopolysaccharide, inflammation and hypercoagulability [J]. Sci Rep, 2020, 10(1): 8777.
|
41 |
BEAM A, CLINGER E, HAO L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota [J]. Nutrients, 2021, 13(8): 2795.
|
42 |
MANILLA V, DI TOMMASO N, SANTOPAOLO F, et al. Endotoxemia and Gastrointestinal Cancers: Insight into the Mechanisms Underlying a Dangerous Relationship [J]. Microorganisms, 2023, 11(2): 267.
|
43 |
HEATH B, GONG W, TANER H, et al. Saturated fatty acids dampen the immunogenicity of cancer by suppressing STING [J]. Cell Rep, 2023, 42(4): 112303.
|
44 |
SIMPSON R, SHANAHAN E, BATTEN M, et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome [J]. Nat Med, 2022, 28(11): 2344-2352.
|
45 |
BEYAZ S, CHUNG C, MOU H, et al. Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis [J]. Cell Stem Cell, 2021, 28(11): 1922-1935.e5.
|
46 |
O'KEEFE S, LI J, LAHTI L, et al. Fat, fibre and cancer risk in African Americans and rural Africans [J]. Nat Commun, 2015, 6: 6342.
|
47 |
MEHTA R, NISHIHARA R, CAO Y, et al. Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue [J]. JAMA Oncol, 2017, 3(7): 921-927.
|
48 |
JIANG S, XIE Y, XIAO X, et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer [J]. Cell Host Microbe, 2023, 31(5): 781-797.e9.
|
49 |
ZHANG X, YU D, WU D, et al. Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance [J]. Cell Host Microbe, 2023, 31(3): 418-432.e8.
|
50 |
MARTíNEZ-GARAY C, DJOUDER N. Dietary interventions and precision nutrition in cancer therapy [J]. Trends Mol Med, 2023, 29(7): 489-511.
|
51 |
LIANG S, XU L, ZHANG D, et al. Effect of probiotics on small intestinal bacterial overgrowth in patients with gastric and colorectal cancer [J]. Turk J Gastroenterol, 2016, 27(3): 227-232.
|
52 |
ZHENG D, LI R, AN J, et al. Prebiotics-Encapsulated Probiotic Spores Regulate Gut Microbiota and Suppress Colon Cancer [J]. Adv Mater, 2020, 32(45): e2004529.
|