实用医学杂志 ›› 2022, Vol. 38 ›› Issue (9): 1136-1140.doi: 10.3969/j.issn.1006⁃5725.2022.09.017

• 医学检查与临床诊断 • 上一篇    下一篇

基于光学相干断层扫描血管成像技术智能预测先天性心脏病围术期转归的临床研究

李聪1,2 孔令聪1,3 胡联亭3 袁海云4 任赟2,5 赵翰鹏2,6 王艳1,2 陈炫卉3 刘华章3 况宇2 梁会营3 余洪华2 杨小红1,2   

  1. 1 华南理工大学医学院(广州 510006);2 广东省人民医院,广东省医学科学院,广东省眼病防治研究所眼科 (广州 510080);3 广东省人民医院,广东省医学科学院医学大数据中心(广州 510080);4 广东省人民医院, 广东省医学科学院,广东省心血管病研究所心外科,广东省华南结构性心脏病重点实验室(广州510080); 5 汕头大学医学院(广东汕头 515041);6 南方医科大学(广州 510000)

  • 出版日期:2022-05-10 发布日期:2022-05-10
  • 通讯作者: 杨小红 E⁃mail:syyangxh@scut.edu.cn
  • 基金资助:
    广州市科技民生科技项目(编号:202002020049);心血管病专项研究项目(编号:2020XXG007)

A clinical study on intelligent prediction of perioperative outcomes in congenital heart disease based on optical coherence tomography angiography technology

LI Cong*,KONG Lingcong,HU Lianting,YUAN Haiyun,REN Yun,ZHAO Hanpeng,WANG Yan,CHEN Xuanhui,LIU Huazhang,KUANG Yu,LIANG Huiying, YU Honghua,YANG Xiaohong.    

  1. School of Medicine,South China University of Technology,Guangzhou 510006 China;*Department of Ophthalmology,Guangdong Eye Institute,Guangdong Provincial People′s Hospital,Guang⁃ dong Academy of Medical Sciences,Guangzhou 510080,China

  • Online:2022-05-10 Published:2022-05-10
  • Contact: YANG Xiaohong E⁃mail:syyangxh@scut.edu.cn

摘要:

目的 探索基于光学相干断层扫描血管成像(OCTA)智能预测先天性心脏病(CHD)围术期转 归的可行性,为 CHD 围术期评估提供无创便捷的辅助工具。方法 前瞻性收集 2017 5 月至 2021 5 于我院行 CHD 矫正术患者的临床资料和 OCTA 图像。根据是否发生术后过度失血或围术期复合不良 结局标注 OCTA 图像。标注图像经数据增强后,训练深度学习预测模型,使用测试集判断模型的性能。 结果 202 CHD 患者中,发生术后过度失血的患者有 45 例(22.3%),发生围术期复合不良结局的有 58 例(28.7%)。在测试集中,术后过度失血预测模型的受试者工作特性曲线下面积(AUC)为 0.82,灵敏度 和特异度分别为 0.90 0.75,准确率为 0.78;围术期复合不良结局预测模型的 AUC 0.81,灵敏度和特异 度分别为0.83和0.80,准确率为0.81。结论 术前OCTA 图像联合人工智能可高效预测CHD 围术期转归。

关键词:

先天性心脏病, 光学相干断层扫描血管成像, 围术期转归, 人工智能

Abstract:

Objective To explore the feasibility of developing an intelligent algorithm for predicting the perioperative outcomes in patients with congenital heart disease(CHD)based on optical coherence tomography (OCTA),and to provide a non⁃invasive and convenient tool for perioperative assessment and outcome prediction of CHD. Methods We prospectively collected the clinical data and preoperative OCTA images of patients undergoing congenital cardiac surgery in our hospital during the period of May 2017 to May 2021. OCTA images were labeled according to whether there was excessive postoperative bleeding or adverse perioperative composite outcomes. Data augmentation was used for the OCTA images with prognostic annotations. A deep learning outcome prediction model was trained,and then a test set was used to judge the performance of the model. Results Of 202 CHD patients 45(22.3%)developed excessive postoperative bleeding and 58(28.7%)underwent adverse perioperative composite outcomes. In the test set,the area under the receiver operating characteristic curve(AUC)of the model for predict⁃ ing postoperative excessive bleeding was 0.82,the sensitivity and specificity were 0.90 and 0.75 respectively,and the accuracy was 0.78;the AUC of the adverse perioperative composite outcome prediction model was 0.81,the sensitivity and specificity were 0.83 and 0.80 respectively,and the accuracy was 0.81. Conclusions Preoperative OCTA images combined with artificial intelligence can accurately predict the perioperative outcomes of CHD.

Key words:

congenital heart disease, optical coherence tomography angiography, perioperative out? come, artificial intelligence